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Problems that involve computing the

mutual interactions within large sets of
particles pervade many branches of sci-
ence and engineering. When the parti-

cles interact through electrostatic (Coulomb) or
gravitational (Newton) potential, the long range
of the resulting forces creates a computational
headache. This is because forces arise for all
pairs of charges (or masses) in such systems. Be-
cause the number of pairs increases quadratically
with the number of particles N included in a
simulation, the computational complexity of
simulations carried out without well-designed
computational strategies is said to be of order
O(N2). This quickly renders computational stud-
ies of the so-called N-body problem practically
impossible as systems increase in size to levels
relevant for realistic problems. Thus, from a
computational point of view, the problems a bio-
physicist encounters simulating ion conduction

through cellular membranes are essentially the
same as those an astrophysicist encounters sim-
ulating accretion of planetary systems. 

Examples from biomedicine illustrate the
dilemma O(N2) algorithms pose for computing
the Coulomb forces that arise in atomic simula-
tion. All biomolecules carry partial charges cen-
tered around their atoms, resulting in Coulomb.
The overall biomolecular charge is usually
small—local neutrality limits the effect of
Coulomb forces to some degree, although accu-
rate simulations cannot neglect these forces.
When unbalanced charges or dipole moments
arise in molecular systems, long-range Coulomb
forces can dominate biomolecular-system
arrangement and dynamics, and faithful de-
scriptions of these forces are essential. 

An example of this is DNA in biological cells.
DNA contains two negatively charged phos-
phates for each pair of bases that establish the
genetic code. Positive ions (such as Na+) that
exist in physiological fluids neutralize these neg-
ative charges, but positive ions spread diffusively
so that Coulomb forces remain strong in spite
of them. Lipid bilayers that form membranes
and are the staging ground for many biomolec-
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ular processes are ubiquitous in biological cells.
The lipids contain head groups that may be
charged but invariably feature a strong electric
dipole. Because lipids are more or less aligned in
parallel in membranes, the dipole moments sum
rather than cancel each other. Water molecules
that also carry strong dipole moments are always
present near lipid bilayers and tend to counter-
balance the lipid dipoles, but do so only to a lim-
ited degree (strong Coulomb forces remain).
These forces imply the presence of strong elec-
tric fields across biological membranes that need
to be accurately described if membrane-process
simulations are to be meaningful.

The computational complexity of naive Cou-
lomb solvers severely constrains progress: sys-
tems with at most a few thousand atoms can be
studied with O(N2) solvers on very fast comput-
ers. However, at least 200 lipids must be included
in a lipid bilayer simulation to have an acceptable
volume-to-surface ratio that can help model bulk
properties. Additionally, at least one water mole-
cule layer must be added to the simulation on
each side of the bilayer. Thus, the smallest simu-
lated volume is about 100Å × 100Å, which is
filled with over 30,000 atoms of lipids and water.
If proteins are embedded in such a system, the
simulated system’s size can quickly reach 200,000
atoms. The DNA-coded information is con-
trolled through proteins that can recognize DNA
sequences. Simulations that seek to understand
this control must include a segment of DNA,
proteins, and the ubiquitous water along with
physiological ions. The smallest system of this
type contains well over 30,000 atoms. Modern
biology poses many exciting challenges that re-
quire simulations of systems with hundred of
thousands to millions of atoms—viral infection,
the conversion of light energy into chemical en-
ergy at photosynthetic membranes of bacteria or
plants, the description of DNA and proteins in
chromosomes, or the transcription of genetic in-
formation into proteins at ribosomes. These
challenges motivated computational scientists to
seek practically feasible solutions to the N-body
problems inherent in Coulomb and gravitational
interactions. The first such algorithm that re-
duced the computational effort to O(N) was
Vladimir Rokhlin and Leslie Greengard’s fast
multipole algorithm (FMA).1

Historical context

Rokhlin and Greengard’s work arguably pro-
vided the first numerically defensible method for

reducing the N-body problem’s computational
complexity, but they weren’t the first to work on
the problem. Some form of the N-body problem
is at the core of many computational problems,
but astrophysical simulations of gravitating bod-
ies and the evaluation of electrostatic interac-
tions between charged particles (such as the
atoms in a biomolecular simulation) have moti-
vated much of the reported work.

Before the development of the FMA and related
algorithms, those running N-
body simulations had two
choices: either attack the O(N2)
complexity of the problem with
brute force or truncate the po-
tential’s infinite range to a more
manageable but less accurate
value. Astrophysicists tended to
gravitate to the former solution,
the Grape (gravity pipe) project
in Japan being the most notable
effort. The project built a series
of massively parallel machines
to rapidly evaluate gravitational
interactions culminating in
Grape-4;2 over 1,000 processors handled the com-
putational complexity. Even so, O(N2) eventually
overwhelms any number of processors, so the
maximum problem size is limited.

Classical molecular simulation has many more
complications than the astrophysical case in that
many other forces act between atoms in addition
to the 1/r interaction (forces constraining bond
lengths and angles, van der Waals forces, and
more). Nonetheless, the Coulomb interaction’s
infinite range makes it the computationally dom-
inant factor in such simulations. Researchers in
the molecular simulation community also took
the brute-force approach with Coulomb’s law,
with custom machines3,4 dedicated to molecular
dynamics simulation. As in the gravitational case,
however, complexity trumps hardware—time
limited these machines as to what size of bio-
molecular system they could study. The Illinois
60-processor transputer-based machine ran for
over two years to obtain a successful simulation
of a lipid bilayer of 200 lipids with 32,000 atoms
that included water. Although this was a ground-
breaking simulation at the time (it demonstrated
a high degree of accuracy in comparison with ex-
perimental observation), the effort required to
execute it was not easily repeatable, and the ap-
proach could not be scaled to the systems 10 to
1,000 times larger that computational biologists
wanted to study.

Rochlin and Greengard

arguably provided the first

numerically defensible

method for reducing the

N-body problem’s

computational complexity.
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Most researchers in the molecular simulation
community took an easier way out. By truncat-
ing the Coulomb interaction’s infinite range to
8Å−20Å or so, they reduced the O(N2) complex-
ity to a linear problem over a fixed, finite neigh-
borhood easily addressed with neighbor lists and
other techniques. Of course, this ignored all in-
teractions beyond the cutoff radius, thus reducing
the simulation’s fidelity. One argument is that be-
cause the many other forces involved in a molec-
ular simulation are modeled at best to a few sig-
nificant figures of accuracy by largely empirically
determined linear or quadratic expressions, be-
ing completely faithful to the electrostatics isn’t
as important. Although some problems can be
successfully studied this way, truncation clearly
has limitations that make it unsuitable for many
simulations, especially the membrane and DNA
simulations discussed earlier.

The method

Matthew Pincus and Harold Scheraga sug-
gested the first basic idea behind the FMA in the
biophysical literature in 1977.5 They described,
and others later implemented, an approximation
where the effect of a group of distant, charged
particles on a particle of interest is described by
replacing the entire distant group with a single
pseudo particle that embodies the group’s prop-
erties. The key properties of the distant group of
particles are its net charge, its dipole moment,
and its quadrupole and higher multipole mo-
ments. Mathematically, these properties are con-
veniently represented by the multipole expansion
of the distant group. The infinite but rapidly con-

verging multipole series expansion is truncated
at a convenient number of terms, in practice usu-
ally three to eight, with more terms given higher
accuracy in the approximation. The particle of
interest can now interact with the entire distant
group by instead interacting with the single mul-
tipole expansion equation represent the group,
instead of with all the distant group’s individual
members (see Figure 1).

The second key idea of the FMA and related
methods is to use a hierarchical decomposition
of space to rationally separate the simulation re-
gion into areas that are suitably distant from each
other to invoke the multipole expansion approx-
imation. In Figure 2’s oct-tree decomposition,
ever-larger regions of space that represent in-
creasing numbers of particles can interact
through individual multipole expansions at in-
creasing distances. The first practical algo-
rithms6,7 combined the two ideas for use in as-
trophysical simulations. Both methods have a
computational complexity of O(Nlog(N)) in the
number of particles N, an improvement over
O(N2). Additionally, the monopole moment is
large in the Newtonian case, because all mass is
positive. Thus, the monopole term alone, and
certainly the first two terms of the multipole se-
ries (monopole plus dipole terms), computed the
gravitational interactions quite accurately.
[insert figure2.eps]

The electrostatic problem is complicated be-
cause charge distributions’ monopole moments
are usually small; positive and negative charges
roughly cancel each other out. By adding more
terms to the multipole series, we can adapt the
Barnes-Hut algorithm to the electrostatic case,
but the resulting method is difficult to rigorously
analyze for its numerical robustness. Enter
Greengard and Rokhlin’s fast multipole algo-
rithm in 1987. Their introduction of a local ex-
pansion further reduced the procedure’s com-
plexity from O(Nlog(N)) to O(N), at least in
certain important cases. Additionally, their
method’s machinery was amenable to a rigorous
numerical analysis that bounded the method’s
error, removing the somewhat ad hoc feel of the
earlier methods. We can now confidently deter-
mine how many terms are required in a multi-
pole expansion to achieve a certain guaranteed
level of accuracy.

The local expansion idea is critical to their im-
proved scheme. Now, distant groups of particles
interact with entire groups of target particles at
once: both the distant group and the target
group are represented by multipole expansions.

P
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Figure 1.
Rather than
interact with
each of the
distant parti-
cles individu-
ally (a), the
particle at P
can interact
with an ap-
proximate ag-
gregation of
the distant
group, such as
its centroid-
located net
charge (b).
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An interaction between these groups essentially
involves a convolution of the coefficient arrays
describing their respective multipole expansions.

An additional and crucial benefit of Greengard
and Rokhlin’s approach is that it is not restricted
to the 1/r potential. Multipole-like formulations
can be constructed for any power law potential
and for other functional forms; we can apply the
same complexity-reducing FMA mechanics to
these cases with similar results. The 1/r case en-
joys some special properties that simplify its
analysis, but extension of these methods to other
classes of potential functions is an active and
fruitful area of current work.

Researchers are studying very large as-
trophysical simulations with hybrids of
the FMA and the earlier Barnes-Hut
scheme. In the biophysical-simulation

world, the Ewald summation method is an ad-
ditional competitor. Since the development of
the FMA, scientists have created various fast ver-
sions of the nearly 80-year old Ewald method
that are faster than multipole codes in some
cases, although their error behavior is harder to
quantify. The Ewald codes also handle periodic
boundary conditions automatically; FMA-de-
rived codes can be extended to this case with ex-
tra effort. Nonetheless, FMA and its offspring
remain important, and the newest formulations
promise to again challenge Ewald codes for the
title of fastest electrostatic solver.
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Figure 2. Mul-
tipole algo-
rithms use hi-
erarchical
spatial decom-
position to
separate the
simulation
space into
regions suffi-
ciently far
apart from
each other to
interact with
the approxi-
mate method
in Figure 1. At
increasing dis-
tances, even
larger regions
of space can
be lumped
into single ap-
proximations.


