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9.1 Introduction

The structure and function of biomolecular machines are the foundation on
which living systems are built. Genetic sequences stored as DNA translate
into chains of amino acids that fold spontaneously into proteins that catalyze
chains of reactions in the delicate balance of activity in living cells. Inter-
actions with water, ions, and ligands enable and disable functions with the
twist of a helix or rotation of a side chain. The fine machinery of life at the
molecular scale is observed clearly only when frozen in crystals, leaving the
exact mechanisms in doubt. One can, however, employ molecular dynamics
simulations to reveal the molecular dance of life in full detail. Unfortunately,
the stage provided is small and the songs are brief. Thus, we turn to petascale
parallel computers to expand these horizons.
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Biomolecular simulations are challenging to parallelize. Typically, the molec-
ular systems to be studied are not very large in relation to the available
memory on computers: they contain ten thousand to a few million atoms.
Since the size of basic protein and DNA molecules to be studied is fixed, this
number does not increase in size significantly. However, the number of time
steps to be simulated is very large. To simulate a microsecond in the life of a
biomolecule, one needs to simulate a billion time steps. The challenge posed
by biomolecules is that of parallelizing a relatively small amount of computa-
tion at each time step across a large number of processors, so that billions of
time steps can be performed in a reasonable amount of time. In particular,
an important aim for science is to effectively utilize the machines of the near
future with tens of petaflops of peak performance to simulate systems with
just a few million atoms. Some of these machines may have over a million
processor cores, especially those designed for low power consumption. One
can then imagine the parallelization challenge this scenario poses.

NAMD [15] is a highly scalable and portable molecular dynamics (MD)
program used by thousands of biophysicists. We show in this chapter how
NAMD’s parallelization methodology is fundamentally well-suited for this
challenge, and how we are extending it to achieve the goals of scaling to
petaflop machines. We substantiate our claims with results on large current
machines like IBM’s Blue Gene/L and Cray’s XT3. We also talk about a few
biomolecular simulations and related research being conducted by scientists
using NAMD.

9.2 NAMD Design

The design of NAMD rests on a few important pillars: a (then) novel strat-
egy of hybrid decomposition, supported by dynamic load balancing, and adap-
tive overlap of communication with computation across modules, provided by
the Charm++ runtime system [11].

9.2.1 Hybrid decomposition

The current version of NAMD is over ten years old. It has withstood the
progress and changes in technology over these ten years very well, mainly be-
cause of its from-scratch, future-oriented, and migratable-object-based design.
Prior to NAMD, most of the parallel MD programs for biomolecular simula-
tions were extensions of (or based on) their preexisting serial versions [2, 21].
It was reasonable then to extend such programs by using a scheme such as
atom decomposition (where atoms were partitioned based on their static atom
numbers across processors). More advanced schemes were proposed [16, 8]
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that used force decomposition, where each processor was responsible for a
square section of the N ×N interaction matrix, where N is the total number
of atoms.

In our early work on NAMD, we applied isoefficiency analysis [6] to show
that such schemes were inherently unscalable: with an increasing number
of processors, the proportion of communication cost to computation cost
increases even if one were to solve a larger problem. For example, the communication-
to-computation ratio for the force decomposition schemes of [16, 8] is of order√
P , independent of N , where P is the number of processors. We showed that

spatial decomposition overcomes this problem, but suffers from load balance
issues.

At this point, it is useful to state the basic structure of a MD program: the
forces required are those due to electrostatic and van der Waals interactions
among all atoms, as well as forces due to bonds. A näıve implementation of
the force calculation will lead to an O(N2) algorithm. Instead, for periodic
systems, one uses an O(N logN) algorithm based on three-dimensional (3-D)
fast Fourier transforms (FFTs) called the particle mesh Ewald (PME) method,
in conjunction with explicit calculation of pairwise forces for atoms within a
cutoff radius rc. This suggests a spatial decomposition scheme in which atoms
are partitioned into boxes of a size slightly larger than rc. The extra margin
is to allow atoms to be migrated among boxes only after multiple steps. It
also facilitates storing each hydrogen atom on the same processor that owns
its “mother” atom — recall that a hydrogen atom is bonded to only one other
atom.

NAMD [10, 9] extends this idea of spatial decomposition, used in its early
version in 1994, in two ways: first, it postulates a new category of objects
called the compute objects. Each compute object is responsible for calculating
interactions between a pair of cubical cells (actually brick-shaped cells, called
patches in NAMD). This allows NAMD to take advantage of Newton’s third
law easily, and creates a large supply of work units (the compute objects)
that an intelligent load balancer can assign to processors in a flexible manner.
The Charm++ system, described in Chapter 20, is used for this purpose. As
we will show later, it also helps to overlap communication and computation
adaptively, even across multiple modules. As our 1998 paper [10] states, “the
compute objects may be assigned to any processor, regardless of where the
associated patches are assigned.” The strategy is a hybrid between spatial
and force decomposition. Recently, variations of this hybrid decomposition
idea have been used by the programs Blue Matter [3] and Desmond [1] and
a proposed scheme by M. Snir [19], and it has been called evocatively the
“neutral territory method” [1]. Some of these methods are clever schemes
that statically assign the computation of each pair of atoms to a specific
processor, whereas NAMD uses a dynamic load-balancing strategy that should
be superior due to its adaptive potential (see Section 9.2.2).

NAMD allows spatial decomposition of atoms into boxes smaller than the
cutoff distance. In particular, it allows each dimension of a box to be 1/2 or
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1/3 of the cutoff radius plus the margin mentioned above. This allows more
parallelism to be created when needed. Note that when each dimension of
the cell is halved, the number of patches increases eightfold. But since each
patch now must interact with patches two-away from it in each dimension
(to cover the cutoff distance), a set of 5 × 5 × 5 compute objects must now
access its atoms. Accounting for double counting of each compute and for
self-compute objects, one gets a total of 8×63/14 more work units to balance
across processors. Note further that these work units are highly variable in
their computation load: those corresponding to pairs of patches that share a
face are the heaviest (after self-computation objects) and those corresponding
to patches that are two hops away along each dimension have the least load,
because many of their atom-pairs are beyond the cutoff distance for explicit
calculation. Early versions of NAMD, in 1998, restricted us to either use full-
size patches, or 1/8th-size patches (or 1/27th-size patches, which were found
to be inefficient). More recent versions have allowed a more flexible approach:
along each dimension, one can use a different decomposition. For example,
one can have a two-away X and Y scheme, where the patch size is halved
along the X and Y dimensions but kept the same (i.e., rc+margin) along the
Z dimension.

9.2.2 Dynamic load balancing

NAMD uses measurement-based load-balancing capabilities provided by the
Charm++ runtime [23]. The runtime measures the load of each compute ob-
ject and each processor during a few instrumented iterations and then as-
signs objects to processors based on the collected information. After the first
load-balancing step, many computes are migrated to under-loaded processors
because the initial assignment of computes to processors is arbitrary and as
a result suboptimal. The subsequent load-balancing decisions, which use a
refinement-based strategy, tend to minimize the number of migrations. This
serves to keep communication volume in check and does not break the run-
time’s assumption of predictability of load.

On machines such as Blue Gene/L, the load balancer also uses knowledge of
the three-dimensional (3-D) torus interconnect to minimize the average num-
ber of hops traveled by all communicated bytes, thus minimizing contention
in the network. While doing the initial mapping of cells to processors, the
runtime uses a scheme similar to orthogonal recursive bisection (ORB) [13].
The 3-D torus of processors is divided recursively until each cell can be as-
signed a processor and then the 3-D simulation box of cells is mapped onto the
torus. In subsequent load-balancing steps, the load balancer tries to place the
computes on under-loaded processors near the cells, with which this compute
will interact.
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FIGURE 9.1: Time profile of NAMD running ApoA1 benchmark on 1024
processors of Blue Gene/L for five timesteps. Shades of gray show different
types of calculations overlapping.

9.3 Petascale Challenges and Modifications

When NAMD was designed over ten years ago [14], million-processor ma-
chines were beyond the imagination of most people. Yet, by virtue of its
parallel design, NAMD has demonstrated good scaling up to thousands of
processors. As we moved to terascale machines (typically having tens of thou-
sands of processors), NAMD faced a few challenges to maintain scalability and
high efficiency.

The emergence of Blue Gene/L (which has only 256 MB of memory per
processor) posed the problem of using a limited amount of memory for the
initial startup (loading the molecular structure information), the actual com-
putation, and load balancing. During startup, the molecular structure is read
from a file on a single node and then replicated across all nodes. This is un-
necessary and limits our simulations to about 100,000 atoms on Blue Gene/L.
Making use of the fact that there are some common building blocks (amino
acids, lipids, water) from which biomolecular simulations are assembled and
their information need not be repeated, this scheme has been changed. Using
a compression scheme, we can now run million atom simulations on the Blue
Gene/L as we will see in Section 9.3.1.

The other major obstacle to scaling to large machines was the previous
implementation of the particle mesh Ewald (PME) method. The PME method
uses 3-D fast Fourier transforms (FFTs), which were implemented via a one-
dimensional (1-D) decomposition. This limited the number of processors that
could be used for this operation to a few hundred depending upon the number
of planes in the grid. To overcome this limitation, a commonly used two
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TABLE 9.1: Benchmarks and their simulation sizes

Molecular
System

Atom
Count

Cutoff
(Å)

Simulation Cell (Å3) Time step
(fs)

IAPP 5,570 12 46.70× 40.28× 29.18 2
ApoA1 92,224 12 108.86× 108.86× 77.76 1
STMV 1,066,628 12 216.83× 216.83× 216.83 1

dimensional (2-D) decomposition of the grid into pencils is now used. This
has led to higher efficiency on large numbers of processors and has also helped
to better overlap the FFT with other operations as can be seen in Figure 9.1.

This figure has been generated using the performance analysis tool in the
Charm++ framework called Projections. For each 100 µs time interval (along
the X-axis), the figure shows the execution time of each function added across
all 1024 processors. Various shades of light gray consuming most of the graph
represent the compute work. The black peaks at the bottom represent patch
integration and the deep gray bordering the hills represents communication.
The area in black in the valley in the center represents the PME computation,
which overlaps well with other functions.

9.3.1 Current performance

The performance of NAMD on various platforms substantiates the claims
made in the previous sections. NAMD has shown excellent scaling to thou-
sands of processors on large parallel machines like the Blue Gene/L and Cray
XT3. The benchmarks used for results presented are shown in Table 9.1.
These molecular systems are representative of almost all sizes of the simula-
tions interesting to biophysicists. They range from a few thousand atoms to
millions of atoms.

The Blue Gene/L (BG/L) machine at IBM T. J. Watson has 20,480 nodes.
Each node contains two 700 MHz PowerPC 440 cores and has 512 MB of
memory shared between the two. The machine can be operated in copro-
cessor mode or virtual node mode. In the coprocessor mode, we use only
one processor on each node for computation. In the virtual node mode, both
processors on each node are used for computation. The nodes on BG/L are
connected in a 3-D torus. The Cray XT3 at the Pittsburgh Supercomput-
ing Center (called BigBen) has 2068 compute nodes, each of which has two
2.6 GHz AMD Opteron processors. The two processors on a node share 2 GB
of memory. The nodes are connected into a 3-D torus by a custom C-star
interconnect.

Figures 9.2(a) and 9.2(b) show NAMD scaling to 32,768 processors of the
Blue Gene/L machine and to 4,000 processors of Cray XT3. Different tech-
niques are at work together as we run on machines with large numbers of pro-
cessors. At some point on the plots, depending on the atoms per processors
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NAMD on Watson BG/L
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NAMD on BigBen XT3
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FIGURE 9.2: Performance of NAMD on Blue Gene/L and Cray XT3.
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FIGURE 9.3: Time per step plotted against ratio of atoms to processors for
NAMD running on BG/L.

and the machine, we switch from 1-Away to 2-AwayX and then 2-AwayXY de-
composition of the patches. We also shift from 1-D decomposition of grids to
2-D for the PME computation when required. These decisions are automated
so as to relieve the user of the burden of identifying optimal configuration
parameters.

9.3.2 Performance on future petascale machines

To model running large molecular systems (many millions of atoms) on
petascale machines with millions of processors, we plotted number of atoms
per processor versus time step for different molecular systems. As can be seen
in Figure 9.3 we get similar performance for a given ratio of number of atoms
to processors for all the three benchmarks (which are quite varied in their
sizes).

This plot suggests that NAMD will perform well for larger sized molecular
systems on new petascale machines. For example, consider a 100-million atom
molecular system which we wish to run on a hypothetical petascale machine
consisting of 5-million processors. This gives us an atom-to-processor ratio of
20, which is within the regime presented in the above plot. The fraction of
CPU cycles spent of FFT/PME increases as N logN as the number of atoms
(N) increases, but this is a relatively small effect. We also validated these
conclusions using our BigSim performance prediction framework [24] for some
petascale designs.
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9.3.3 Acceleration co-processors

There is currently excitement about the potential of heterogeneous clus-
ters in which the bulk of computation is off-loaded to a specialized (or at
least less-flexible) but higher performance coprocessor. Examples include
the Cell Broadband Engine processor, graphics processors (GPUs), field-
programmable gate arrays (FPGAs), and the special-purpose MD-GRAPE.
Although these application accelerators are capable of sustaining hundreds of
gigaflops for well-suited application kernels, data transfer between the CPU
and the coprocessor limits performance to perhaps a factor of ten over a tra-
ditional CPU core. Since accelerated nodes are likely to outrun interconnect
bandwidth, their impact will be seen most on throughput-oriented clusters,
while leadership-class petascale machines will employ multicore processors for
maximum code portability and a more balanced design. The parallel design of
NAMD would be little-changed by the addition of acceleration coprocessors.

9.4 Biomolecular Applications

Scientifically interesting simulations of biomolecular systems currently range
from ten thousand to a few million atoms, while future simulations may extend
to 100,000,000 atoms. Progress will be on two fronts: supporting simulations
of larger systems and increasing simulation rates on more powerful machines
as they appear. For smaller systems the length of simulation that can be ob-
tained is limited by latency and serial bottlenecks (strong scaling), while for
larger simulations the size of the available machine limits performance (weak
scaling). Table 9.2 summarizes expected simulation capabilities for NAMD
running on the latest leadership-class hardware. Values for years 2004 and
2006 reflect capabilities already achieved. All simulations use a 12 Å cutoff,
PME full electrostatics, and 1 femtosecond time steps. Achieving simulation
rates higher than 100 nanoseconds/day would require significant improvement
in network latencies, which is not easily foreseen in the next 5 years. Exam-
ples of biomolecular simulations in each size range are given in the table,
illustrated in Figure 9.4, and described below.

9.4.1 Aquaporins

Water constitutes about 70% of the mass of most living organisms. Reg-
ulation of water flow across cell membranes is critical for maintaining fluid
balance within the cell. The transportation of water in and out of a cell
is mediated by a family of membrane proteins named aquaporins (AQPs),
which are widely distributed in all domains of life. Through modulating wa-
ter permeability of cellular membranes, AQPs play a crucial role in water
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FIGURE 9.4: (See color insert following page 18.) Example biomolecular
simulations: (a) aquaporin in membrane with solvent, (b) potassium chan-
nel in membrane with solvent, (c) ribosome, (d) poliovirus with cell surface
receptors, (e) photosynthetic chromatophore, (f) BAR domain vesicle cross
section.

homeostasis of living cells. In the human body, there are at least 11 different
AQPs, whose physiological importance is reflected in the many pathophysi-
ological situations associated with their absence/malfunction. For example,
cataracts and diabetes insipidus have been linked to the impaired functions
of AQP0 and AQP2, respectively. A particularly intriguing property of AQPs
is their ability to block protons while allowing water to pass. In the past few
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TABLE 9.2: Forecast of production simulation capabilities
Size 100 K atoms 1 M atoms 10 M atoms 100 M atoms
e.g. aquaporin,

potassium chan.
STM virus,
ribosome

poliovirus chromatophore,
BAR dom. vesicle

2004 4 ns/day
500-core Alpha

2006 10 ns/day 4 ns/day
500-core XT3 2000-core XT3

2008 100 ns/day 10 ns/day 1 ns/day
5,000-core machine

2010 100 ns/day 100 ns/day 10 ns/day 1 ns/day
50,000-core machine

2012 100 ns/day 100 ns/day 100 ns/day 10 ns/day
500,000-core machine

years, MD simulations [20] have contributed significantly to the understand-
ing of this unique property of AQPs, and also of the molecular basis of their
function and selectivity. A single solvated and membrane-embedded AQP
tetramer simulation [22] comprises ∼100,000 atoms.

9.4.2 Potassium channels

Ions crossing potassium channels are responsible for the generation and
spread of electrical signals in the nervous system. A number of high-resolution
crystal structures of potassium channels have been resolved over the last
decade, recognized in part by the 2003 Nobel prize, awarded to Dr. MacKin-
non for his pioneering work on structure-function relationships of these chan-
nels. However, how potassium channels dynamically transit between open,
inactive, or conductive states upon application of voltage remains highly de-
bated. Molecular dynamics simulations seem to be an ideal tool to tackle this
question, but relevant gating events occur on the millisecond timescale, while
current MD simulations only reach nanosecond timescales. Moreover, all-atom
descriptions are required to faithfully model the behavior of the channel, e.g.,
its ion selectivity. A system of 350,000 atoms containing one potassium chan-
nel, a patch of membrane, water, and ions is being simulated already at 100 ns
per month on 512 Cray XT3 CPUs [12]. To study channel gating, however, a
tenfold improvement in simulation speed (1µs per month) is required.
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9.4.3 Viruses

Satellite Tobacco Mosaic Virus (STMV), one of the smallest and simplest
viruses known, consists of a ball-shaped RNA genome enclosed in an icosa-
hedral capsid composed of 60 identical protein units; the complete particle is
roughly 17 nm in diameter. Although small for a virus, the complete simula-
tion of STMV immersed in a water box with ions contains about one million
atoms. Based on the results of the first simulation of the complete STMV
particle [5], researchers were able to propose a possible assembly pathway for
the virus. Further efforts on this project focus on the disassembly of STMV,
which is known to be mediated by a change in pH (this holds for many other
viruses), although the exact mechanism is unclear.

The poliovirus is larger and more complex than STMV (the polio capsid
is about 30 nm in diameter and composed of 240 protein units), and the dis-
assembly is believed to be triggered by contact between the capsid and host
cell membrane and receptor proteins. Structures of the poliovirus itself and
of the virus in complex with the receptor are available, although structure
of the receptor is known only at a low resolution of ∼10 Å. Researchers have
already developed a homology model of the poliovirus receptors and started
MD simulations of a single capsid-receptor bundle (∼250,000 atoms). The
systems intended for further simulations, focusing on capsid disassembly, in-
clude a portion of the capsid in contact with a membrane (about 3 million
atoms) and the complete poliovirus capsid (∼10 million atoms). Further, a
portion of the capsid in contact with a membrane will be simulated (up to
more than 3 million atoms), to elucidate the role of the cellular membrane in
the opening of the capsid and release of the genome. Finally, a simulation of
the complete poliovirus capsid might be necessary for investigation of how the
disassembly proceeds over the surface of the whole virus, which would require
building a system consisting of about 10 million atoms.

9.4.4 Ribosome

The translation of genetic information into protein sequences is essential for
life. At the core of the translation process lies the ribosome, a 2.5–4.5 MDa
ribonucleoprotein complex where protein synthesis takes place. The ribosome
is not only interesting because of its fundamental role in the cell, it is also
a major target for drug discovery and design. Many antibiotics in clinical
use block protein synthesis in the bacterial ribosome. With the emergence of
high-resolution structures of the ribosome complexed with antibiotics, it has
become clear that chemically diverse antibiotics target only a few ribosomal
sites [17]. Structure-based drug design targeting these specific sites is an at-
tractive option for discovering new antibiotics [4]. The Sanbonmatsu team
at Los Alamos National Laboratory performed ground-breaking large-scale
(2,640,000 atoms) all-atom MD simulations of the entire ribosome beginning
in 2003. These simulations, performed with NAMD, discovered a corridor
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of 20 universally conserved ribosomal RNA bases interacting with the tRNA
during accommodation. The study was published in 2005 and also demon-
strated the feasibility of simulating conformational changes in multimillion-
atom molecular machines using NAMD [18].

9.4.5 Chromatophore

One of the most fundamental processes for life on Earth is the transfor-
mation of light energy into the synthesis of ATP. This transformation is
achieved through different specialized organelles, one such organelle being
the chromatophore of the purple bacterium Rhodobacter sphaeroides. Chro-
matophores are sheet-like or bulb-like indentations of the bacterial plasma
membrane. The chromatophore contains six types of proteins: about twenty
photosynthetic reaction centers, about twenty light-harvesting complexes 1
(LH1), about 150 light harvesting complexes 2 (LH2), about ten bc1 com-
plexes, about five cytochrome c2s, and usually one ATP synthase. These
proteins are all individually structurally known, though not all from the same
species. The chromatophore with its 200 proteins carries out a cardinal func-
tion in the bacterium, the absorption of sunlight by about 4,000 chlorophylls
(contained in LH1 and LH2 along with 1,300 carotenoids) and the transfor-
mation of its energy into the synthesis of adenosine-triphosphate (ATP) from
adenosine-diphosphate (ADP). The entire chromatophore model, an archety-
pal example of systems studied in structural systems biology, consists of more
than 200 proteins in a (90 nm)3 system containing about 70 million atoms.

9.4.6 BAR domain vesicle

Proteins containing BAR domains play an important role in essential cel-
lular processes (such as vesicle endocytosis at synaptic nerve terminals) by
inducing or sensing membrane curvature. The U.S. National Science Foun-
dation (NSF) solicitation Leadership-Class System Acquisition—Creating a
Petascale Computing Environment for Science and Engineering provides the
following model problem, involving protein BAR domains, for the proposed
machine:

A molecular dynamics (MD) simulation of curvature-inducing
protein BAR domains binding to a charged phospholipid vesicle
over 10 ns simulation time under periodic boundary conditions.
The vesicle, 100 nm in diameter, should consist of a mixture of
dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylser-
ine (DOPS) at a ratio of 2:1. The entire system should consist
of 100,000 lipids and 1,000 BAR domains solvated in 30 million
water molecules, with NaCl also included at a concentration of
0.15 M, for a total system size of 100 million atoms. All system
components should be modeled using the CHARMM27 all-atom
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empirical force field. The target wall-clock time for completion
of the model problem using the NAMD MD package with the
velocity Verlet time-stepping algorithm, Langevin dynamics tem-
perature coupling, Nose-Hoover Langevin piston pressure control,
the particle-mesh Ewald algorithm with a tolerance of 1.0e-6 for
calculation of electrostatics, a short-range (van der Waals) cut-off
of 12 Angstroms, and a time step of 0.002 ps, with 64-bit floating
point (or similar) arithmetic, is 25 hours. The positions, veloci-
ties, and forces of all the atoms should be saved to disk every 500
time steps.

The requirements for this simulation are similar to the requirements of
the chromatophore simulation described above. In both cases, systems con-
taining hundreds of proteins and millions of atoms need to be simulated to
gain insights into biologically relevant processes. In order to accomplish such
projects, NAMD must be ported to petascale parallel computers.

9.5 Summary

Each time step in a biomolecular simulation is small, yet we need many mil-
lion of them to simulate a small interval of time in the life of a biomolecule.
Therefore, one has to aggressively parallelize a small computation with high
parallel efficiency. The NAMD design is based on the concept of Charm++ mi-
gratable objects and is fundamentally adequate to scale to petascale machines—
this is indicated by the 1–2 milliseconds time per step achieved by NAMD for
some benchmarks, with ratio of atoms to processor in a similar range that
we expect to see on petascale machines. We have demonstrated scalability
to machines with tens of thousands of processors on biomolecular simulations
of scientific importance. Implementation strategies have been reworked to
eliminate obstacles to petascale through memory footprint reduction and fine
grained decomposition of the PME computation. All this has made the study
of large molecules such as the ribosome and entire viruses possible today and
will enable even larger and longer simulations on future machines.
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