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Introduction

The brain, the most complex organ of higher organisms, has attracted the attention
of theoretical scientists for as long as it was recognized as the seat of the intellect.
A recent renaissance of the theory of the brain has been prompted by experimental
advances on the one side and by the advent of the modern computer on the other
side, the latter serving as an engine to numerically simulate scenarios suggested by
various theories.

The modern computer, however, turned out to be more than a number cruncher,
it became a metaphor for the brain and it spawned a new discipline, the science of in-
formation. Even though this science is a youngster among the established disci-
plines, given its young age one cannot but be impressed with its achievements. One
such achievement, considered below, builds on the discovery of a close relationship
between algorithms and geometry and led to the field of computational geometry.

The brain is a computer, a fact which is trivial and, hence, nearly useless. We
understand the brain’s hardware only on a very rough scale, we definitely do not
understand its software, we are seeing glimpses of how it codes information.
Nevertheless, that the brain computes is a fact and one may gain some inside from
a comparison with its engineered brethren, the computer. For this purpose we ask
what computational strategies information science suggests for solutions to
problems with which the brain is confronted. Surely, one has to exercise great
caution in translating answers into statements regarding neural structures and
neural processes, but not pursuing such questions and answers is tantamount to
turning a blind eye to available knowledge.

In this lecture we look towards information science and ask two questions. First,
how can the brain use its main structural and dynamic components, neurons and
their synapses, to code the extremely wide ranging information it is confronted with.
We will turn towards computational geometry for an answer and demonstrate that
the theory of Delaunay tesselations provides a natural framework in which brain
maps can be described. This approach is then compared to the representation of
visual input in area v1 of the visual cortex as observed and modelled.

We also pose a second question regarding the brain’s overarching objective to
provide a rational link between sensory input and motor action, e.g., between sight
and flight. This extremely ambitious question requires a justification which we
derive from the fallacies of lesser goals, which slice out of the overall function of the
brain partial capabilities. Such reduction raises serious questions: Does the chosen
capability really constitute a significant step for the overall function, i.e., of
generating an optimal response to sensory inputs, or has it been chosen just because
a solution is at hand? Does one understand how he capability studied and the
solution suggested could link to other necessary capabilities in the chain of brain
processes which realize the overarching goal. The questions raised are avoided if one
models a brain function initiated by sensory data and completed by an appropriate
motor action.

Naturally we focus on a most simple task which we choose as the task of grasping
a cylindrical object through visual guidance. In lieu of a proper animal model we
attempt to solve this task for an engineered camera-robot system, choosing a robot
arm which shares properties with a skeletal muscle system. Our approach which
combines visual input and motor responses is formulated. The camera-robot system
is described and the application of the theory to this system is demonstrated.
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Topology Representing Networks

In this section we consider the problem prevalent for brain function, how the brain’s
neurons and their synapses can represent data structures pertaining, e.g., to an
extremely wide variety of sensory modalities. We begin with the observation that
even the extremely large number of neurons in the brains of higher animals, about
10°, and their synapses, about 1012, are no match to the combinatorical multitude of
data which need to be processed in an animal’s lifetime. Definitely, the brain must
account for the continuum of data through a discrete and very sparse representa-
tion. We assume the data to be embedded in a Euclidean space R® of dimension D.
The data inherit from this space, in particular, a metric which serves to compare
data. The problem of representing continuous data v through a discrete set
S = {Wy, ..., wy} of representative data is commonly referred to as vector
quantization: one partitions the relevant volume of the Euclidean space, where data
points v occur with significant frequency, into a discrete and finite set of cells,
chosen as polyhedra; each point in the space is then represented by the center w; of
the cell ¥}, the so-called Voronoi polyhedron in which the data point lies. The set of
Voronoi polyhedra V; which partitions the space are defined through the set S as
follows

Vi={veRIv—wl = lv-wlj=1_.,N} i=1.,N. [l

The Voronoi polyhedra provide a complete partitioning of the embedding space R”,
i.e., M2 = UV,. The set of all Voronoi polyhedra is called the Voronoi diagram. An
example arises in case of triangulation of a plane in which case the Voronoi
polyhedra are triangles. This illustrated in Figure 1, bottom, where the grey lines
represent a section of the Voronoi diagram.

Figure 1 illustrates how the neurons of the brain on the one side and a data
structure as it occurs, for example, for a sensory modality on the other side, are
matched through the Voronoi diagram. The centers of the Voronoi polyhedra can be
naturally identified with the neurons of the brain, the interior of the polyhedra with
the receptive fields of the neurons. A sensory event corresponds to the presentation
of a data point v € R to the algorithm which seeks to develop the Voronoi diagram.
One determines the Voronoi polyhedron V; in which v lies, i.e., the w; closest to v,
and interpretes this as implying the excitation of neuron j. It must be stressed from
the out-set that the generality of this approach is misleading: nature certainly does
not consider complex sensory impressions, €.g., a complete visual scene like a face,
as a data point; rather it filters from such impressions elementary facets which are
re-combined in the brain to reach interpretations of, e.g., visual scenes. The wisdom
of biological evolution manifests itself in the type of filters applied; in rare cases, for
example in vision, the filters are known and the approach suggested can be applied
in a straightforward way. In other cases, suitable filters must be chosen first, e.g.,
through a principal component analysis applied to local data features (RUBNER and
ScHULTEN 1990, RUBNER et al. 1990), before the present approach can be applied.

Nevertheless, the receptive field structure provides a powerful solution to a basic
geometrical problem which deals with the proximity of points in a metric space as it
arises in many information processing tasks. The most prominent example of such
a proximity problem is the nearest-neighbour or, more generally, the k-nearest-
neighbour search: given N points in a metric space, which is (are) the nearest (k
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Fig. 1 How does the brain represent a complex task space while beeing limited by a finite number of
neurons and connections between them? Using vector quantization, it is possible to map continous data
on a discrete set of cells. Each point in the space is then represented by a Voronoi polyhedron. Further
explanations are given in the text.

nearest) neighbour(s) to a given query point (Dubpa and HART 1973). This best
match retrieval has to be performed in classification and interpolation tasks with
applications in areas ranging from speech- and image processing over robotics to
efficient storage and transfer of data (MAKHOUL et al. 1985, KOHONEN et al. 1984,
NayLor and L1 1988, GrRay 1984, NasraBaDpI and KING 1988, NasraBADI and FENG
1988, RITTER and SCHULTEN 1986).

For many data processing purposes it is necessary to develop also a represen-
tation of neighbourhood relationships of the data structure. The simplest task
which requires such representation is that of finding the shortest path between two
data points of a continuous data structure. If one wants to determine such path
within the framework of Voronoi diagrams one needs to envoke the so-called
Delaunay tesselation which connects the centers of all Voronoi polyhedra with the
centers of neighbouring Voronoi polyhedra. The latter are defined as those
polyhedra V; and V; which share a vertex, edge, face, etc., such that the property
Vi V; # & holds. The ensuing Delaunay tesselation is also illustrated in Figure 1.
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Fig.2 A »computer mouse« (lower left corner) and the topology preserving map of the environment it
has formed by employing the competitive Hebb rule. The dark areas are obstacles the » computer mouse «
had to circumvent while exploring its environment by random walk. Succesive positions of the
»computer mouse « formed the input patterns for the network. The distribution of the pointer positions
w;, which are marked as dots, is dense. Hence, the connectivity structure formed by the competitive Hebb
rule corresponds to the masked Delaunay triangulation and defines a topology preserving map of the
feature manifold, i.e., the obstacle-free area. The topology preserving map represents the topology of the
obstacle-free part such that the map can be used by the »computer mouse« to plan short paths to target
locations (e.g., the location marked by the circle). (MARTINETZ and SCHULTEN 1994)

This representation allows one to associate the minimum path between two data
points in ®? with the shortest path in the Delaunay tesselation. This task is rendered
nontrivial due to the possibility that the data structure embedded in R” often does
not fill a convex volume, but rather a volume rendered strongly corrugated trough
obstacles. An example of such situation is presented in Figure 2 which presents
within the Delaunay triangulation a minimum path between two points. The
Delaunay triangulation has its neurobiological counterpart in the synapses between
nerve cells as we discuss in the next Section.
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Inaplane, the Delaunay tesselation is actually a triangulation and is obtained if one
connects all pairs w;, w; € S, the Voronoi polygons ¥;, ¥; of which share an edge. In
general, for embeddmg spaces. R of arbitrary d1mens1on D, the Delaunay
triangulation Ds of a set S = {wy, ..., wy} of points w; € R is defined by the graph
whose vertices are the w; and whose adjacency matrix A, A;€{0,1},4,j=1,..,N
carries the value one if and onlyif V; n V; # (J. Two vertices w;, w; are connected
by an edge if and only if their Voronoi polyhedra Vi, V; are adjacent.

A number of theorems about properties of the Voron01 diagram and the
Delaunay triangulation are known (see, e.g., PREPARATA and SHAMOS 1985).
However, most of them are valid or at least can be proven only in the planar case, for
D = 2.1In higher dimensional embedding spaces R°, D > 2 only little is known so
far. One reason is that only for D = 2 the Voronoi diagram and the Delaunay
triangulation are planar graphs and, therefore, only for D = 2 Euler’s formula can
be applied (BoLLOBAS 1979). Euler’s formula provides the important result that in
the planar case the number of edges of the Voronoi diagram as well as of the
Delaunay triangulation does not exceed 3N — 6 and, hence, the Voronoi diagram
and the Delaunay triangulation can be stored in only linear space (linear in the
number of vertices N). Further, due to this result, both structures are transformable
into each other in only linear time.

A generalization of the minimum path problem is posed by the construction of the
Euclidean minimum spanning tree: given N points in a metric space, what is the graph of
minimum total length whose vertices are the given points (KRUSKAL 1956, PrRiM 1957,
DukSTRA 1959). Constructing the Euclidean minimum spanning tree is a common task
in applications requiring optimally designed networks, e.g., communication systems
which have minimal interconnection length. Other applications of the Euclidean
minimum spanning tree are in clustering (GOWER and Ross 1969, ZAHN 1971), pattern
recognition (OSTEEN and LN 1974), and in searching for (approximate) solutions of the
traveling salesman problem (ROSENKRANTZ et al. 1974).

Voronoi diagrams and Delaunay tesselation arise also in the triangulation
problem: given N points in a plane, connect them by non-intersecting straight lines
so that every region inside the convex hull of the N points is a triangle. The
triangulation problem occurs in the finite-element method (STRANG and Fix 1973)
and in function interpolation on the basis of N data points where the function
surface is approximated by a network of triangular facets (GEORGE 1971).
A comprehensive overview of the above and further proximity problems can be
found in PREPARATA and SHAMOS (1985). Delaunay triangulations have recently
been applied in computational fluid dynamics (BRAUN and SAMBRIDGE 1995).

Constructing the Delaunay triangulation in a preprocessing stage yields a starting
point for efficiently solving proximity problems. It can be shown that if the
Delaunay triangulation of a given set of points S is known, the above stated and
other proximity problems can be solved with at most linearly increasing computa-
tional effort. The triangulation problem, for example, is obviously already solved
with the construction of the Delaunay triangulation and does not need further
computation'. The computation time needed for finding the Euclidean minimum

! Solving the triangulation problem by means of the Delaunay triangulation has advantages particularly
in function interpolation. When a function is approximated piecewise-linear over the facets of
triangulation, the Delaunay triangulation yields a smaller worst case error than any other triangulation
(OMoOHUNDRO 1990). This property will be exploited for the motor control problem below.
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spanning tree is reduced significantly since the edges of the Euclidean minimum
spanning tree are a subset of the edges of the Delaunay triangulation (SHAMOS 1978).
Knowing the Delaunay triangulation, it only requires O(X) instead of O(N log N)
time for ist construction. The nearest-neighbour and k-nearest-neighbour search
can be performed in only O(log N) instead of O(N) time by exploiting the Delaunay
triangulation (KNUTH 1973).

We have recently developed an algorithm which achieves the construction of
a Delaunay tesselation for data sets with a metric, but unknown dimension of the

Fig.3 The competitive Hebb rule together with the neural gas algorithm forming a topology preserving
map of a topologically heterogeniously structured manifold. The given manifold M consists of
a three-dimensional (right parallelepiped), a two-dimensional (rectangle), and a one-dimensional (circle
and connecting line) subset. The neural gas algorithm as an efficient input driven vector quantization
procedure distributes the pointers over the manifold M. Depicted are the initial state, the network after
5000, 10000, 15000, 25000 and 40000 adaption steps. At the end of the adaption procedure the network
(graph) forms a perfectly topology preserving map that reflects the topological structure and the
dimensionality of the manifold M. (MARTINETZ and SCHULTEN 1994)
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embedding space. Data points are sequentially fed to the algorithm which develops
a Voronoi diagram and Delaunay tesselation which continue to adapt to the data set
(MARTINETZ and SCHULTEN 1994). An example has been shown in Figure 2 above.
Another example is presented in Figure 3. The figure shows the evolution of the
Delaunay tesselation of a data structure embedded in ®>, composed of a cube,
aplane, a line and a circle. A sequence of data points v(z), = 1, 2, ... are randomly
generated in the mentioned object; initially, » neurons« are floating disconnected in
the vicinity of this object, then enter it, spread across it and finally fill it and tesselate
it, the cube by a »foam« of tetraeders, the plane by a » carpet« of triangles, and line
and circle by a respective one-dimensional graph.

Development of Maps in the Visual Cortex

In the preceeding section we discussed how a set of neuronms, labelled by

j=1,2,..,N, and their synapses, collected in a synaptic matrix Cij
i,j=1,2,..., N, provide through a Voronoi diagram and Delaunay tesselation
a discrete representation of a data structure and its neighbourhood properties. We
want to demonstrate now that this construction has a counterpart in the cortical
areas of the brains of higher organisms.

The most studied part of the cortex is the visual cortex, and therein area v1. This
area, which exists on both sides of the brain, is connected through nerve fibres to the
lateral geniculate nuclei (one for each side) and from there to the retinas of the eyes
(Lee and MALPELI 1994, TZONEV et al. 1995). Let us denote, for the time being, the
relevant neurons in area vl by j = 1, 2, ..., N. Applying naively the considerations
in the previous section one would expect that a neuron, say neuron j, will be
activated when a visual impression is perceived, i.e., when a cat sees a mouse sitting
in the laboratory. This is not so; many neurons become activated by such
impression.

The question arises which data are then represented by the activity of single
neurons. The answer is that the cortical neurons actually represent local visual
stimuli. HUBEL and WIESEL (1962) have shown that the cortical neurons represent

— the location of a visual stimulus in the left or right eye described, say, by
a number e,

— the location of the stimulus in the visual field as projected on the retinas,
represented by coordinates x, y,

— an directional anisotropy of the stimulus represented by a variable ¢ with
periodicity of 180°.

This latter feature, a priori is unexpected, but arises naturally when one carries out
a principal component analysis of natural images which are composed to a large
degree of line segments. How such analysis can be realized by neural networks is
demonstrated in RUBNER and SCHULTEN (1990) and RUBNER et al. (1990).

We will see that the brain needs to pay a price for filtering directional anisotropy into
its primary visual representation and, apparently, does so to achieve already some
preprocessing in the primary visual representation. Since neurons in vl are not
necessarily responding only to stimuli of one eye, the variable e above is not Boolean,
but may be chosen from a finite interval of the real numbers, say [ — 1, 1], where a value
of —1 (1) corresponds to a stimulus associated solely with the left (right) eye.
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Applying the earlier considerations we conclude at this point that cortical neurons
in area v1 represent data embedded in a space resulting from the Cartesian product
of a three-dimensional torus T"and the interval [—1, 1]. For the sake of simplicity we
will neglect the latter factor in the following discussion, i.e., consider a hypothetical
cortical area connected solely to one eye; our actual comparision with biological
data, however, will include the complete data space.

At this point we take notice of the fact that cortical neurons are actually
characterized through a specific location in the cortex which can be considered for
this purpose as a sheet with a coordinization g = (£, {)7. This implies that the
Voronoi diagram establishes a map which assigns to positions p;,j =1, 2,..., N
centers d; e M3 of the respective Voronoi polyhedra covering a torus.

The locations of cortical neurons in a sheet suggests that the neuronal
connections are biased towards a two-dimensional topology. This s, in fact, the case
since the neurons are initially endowed with connections to their neighbours. These
connections do not follow the strict pattern of a Delaunay triangulation, rather
a single neuron is connected also to next-nearest and next-next-nearest neighbours
on so on, and with a connection strength which is not Boolean, but rather reflects
a graded strength which, in general favours closer neighbours. The connection
(synaptic) strength Cj; measures the ability of neuron j to contribute to the
excitation of neuron k; strong positive values lead to a tendency that neurons j and
k tend to be excited together. The connection strengths can also assume negative
values, and do so often for neurons within a shell of a certain distance (MARR 1982).
This implies that a neuron tends to suppress the activation of neurons in the
respective shell. Connection strengths vanish for neurons beyond this shell, but
there exist many longer range synapses of key functional importance.

One must note here that the imprinting of a two-dimensional topology onto the
cortical neurons is by no means a necessity; actual connections between neurons
could represent any dimension, as if a D-dimensional Delaunay tesselation is
»squeezed« into a two-dimensional sheet with all edges intact. In fact, the
two-dimensional connections of neurons are certainly an oversimplification and
there is strong evidence that further adjustable, so-called plastic, connections exist
and play a role for the shape of the neuron’s Voronoi polyhedra (receptive fields).
But a predominance of two-dimensional features appears to exist in area v1 of the
visual cortex.

At this point one is faced with a fascinating dilemma: If cortical neurons in v1 live
in a two-dimensional space how can they represent the three-dimensional data torus
T'? The dilemma is more fascinating on account of the fact that the cyclic coordinate
¢ describing directional visual features cannot be mapped continuously onto the
cortical sheet, a two-dimensional manifold; if such maps are thought, singular
points arise near which lie neurons representing rapidly different directions. Due to
the cyclic nature of the variable ¢ many such points can exist and the number of
singular points can be roughly related to how many times the sheet attempts to
represent all directions.

Rather than pushing further our theoretical deliberations we seek guidance from
observation. Experiments carried out by BLASDEL (BLASDEL 1992 a, b, BLASDEL et al.
1995) and GRINVALD (1986) provided information how the directional sensitivity of
neurons, €.g., ¢, is mapped to area v1. A typical map for the macaque is presented in
Figure 4 (left hand side). The figure presents ¢ through a color wheel, the various
colors corresponding to different ¢-values. A large number of singular points can be
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recognized, a sample (point 2) being indicated. A better characterization of this map
is shown on the right hand side of Figure 4 which shows the so-called iso-orientation
lines, i.e., all points (neurons) in the cortical sheet which are maximally sensitive to
a certain orientation. These lines are found to converge into certain points on the
sheet, namely the singular points. The part of area vl shown in Figure 4 exhibits
about fifty singular points and, hence, represents orientations about fifty times.

The map in Figure 4 includes also the so-called occularity, i.e., the representation
of left and right eye. The domains corresponding to the eyes are delineated through
thin lines which run nearly orthogonally to the iso-orientation lines. The domains
form columns, the so-called occularity columns. Figure 4 does not represent the
mapping of locations in vl to positions in the visual field. This mapping will be
discussed further below.

The question arises according to which principles the map in Figure 4 has been
selected by evolution for the primary visual representation. In this respect it should
be noted that, in the macaque, visual maps form during the first few months after
birth and are driven by visual input, as demonstrated in visual deprivation
experiments. One possibility to illucidate the principles behind the distribution of
receptive field properties in v1 is to postulate morphogentic rules which reproduce

Fig. 4 Left: The lateral spatial pattern of orientation preference in the striate cortex of an adult
macaque as revealed by optical imaging. The figure (BLASDEL 1992 a, b) shows a4.1 mm x 3.0 mm surface
region located near the border between cortical areas 17 and 18 and close to the midline. (Animal NM 1 in
OBERMAYER 1993.) Local average orientation preference is indicated by color such that the interval of
180° is mapped onto a color circle. Arrows indicate (/) linear zones, (2) singularities, (3) saddle points,
and (4) fractures. Right: Macaque orientation and ocular dominance data combined (OBERMAYER et al.
1992, OBERMAYER and BLASDEL 1993). Black contours separate bands of opposite eye dominance. Light
grey iso-orientation contour lines indicate intervals of 11.25°, The medium grey contour represents the
preferred orientation 0°. Arrows indicate (/) singularities, (2) linear zones, (3) saddle points, and (4)
fractures. (ERWIN et al. 1995)
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the observed maps in computer simulations and mathematical analyses. This
program has been carried out in OBERMAYER et al. (1992). The work showed that
certain rules, which maximize the continuity of the map from the cortical sheet to
the data space for (e, x, y, ¢), yield a pattern of receptive field properties which is in
close agreement with neurobiological observation based on voltage sensitive dyes.
In OBERMAYER et al. (1992) both observed maps and model maps are compared and
were found in excellent agreement. In ERWIN et al. (1995) the various models
suggested for the formation of the primary visual representation in the cortex are
compared and, in particular, the characteristics of the singular points in the map, as
shown in Figure 4, and similar maps obtained by others are analyzed.

It is of interest to take a closer look at the dynamics of the formation of the visual
maps in brains. The character of the map in Figure 4 is very much determined by the
dilemma that the cortical sheet, a two-dimensional manifold, seeks to map into
a space of visual features, parametrized by (x, y, ¢) (we neglect presently occularity)
which lie in a three-dimensional space. The formation of the map is actually driven
by visual experience, i.e., a set of sample data (x(®), (1), (), t = 1,2, ... The data
represent the local features of optical images. For the following discussion we follow
OBERMAYER et al. (1992) and note that local features in actual images may not
exhibit anisotropies which would allow to attribute a direction ¢. An example is
a painting by the pointillist SEURAT who practiced some of his art applying only
small color dots to the canvas. In a less extreme case local features might show
anisotropic features to various degrees as described by ellipses, characterized by an
excentricity ¢ and the angle ¢ of the major axis. If one would train a young eye-brain
system with a pointillistic painting, the cortex would actually not experience
anisotropies and actually need to map the cortex sheet into a finite domain in R?
which can be realized very easily as discussed in RITTER et al. (1992, 1990). However,
realistic scenes will feature local anisotropies which can be characterized through
a mean square deviation ¢ into ¢, ¢-space. The larger ¢ for a set of training images,
the more significant is the third dimension and the more the neurons in the cortical
sheet seek to represent this dimension. The resulting map can be described through
an elastic sheet which is marked by a square grid representing the Cartesian
coordinates of the cortical sheet. This sheet is placed into the three-dimensional data
space such that cortex point g;is pulled to the data point (x, y, ¢ stretching the sheet
into R®3). Figure 5 shows a typical result for a case where ¢ is assumed to be not
periodic. One can recognize that the map protrudes into the third dimension, but at
a price of distorting the two-dimensional grid and leading even to folds which imply
discontinuities connected with multiple mappings. The dynamics of maps like in
Figure 5 where described in RITTER and SCHULTEN (1988) and in the textbooks
(RITTER et al. 1992, 1990). There it is shown, for example, that the shape of the maps
is governed by a phase transition which is governed by the property o of the training
images: below a critical g-value maps will actually resist to explore the third
dimension, exhibiting only reversible fluctuations with amplitudes for certain
modes which increase very strongly (singularity) near the critical point. For larger
o values the training induces a buckling of the map, as shown in Figure 5 which is
irreversible.

It is fascinating to follow the character of the maps when o is continuously
increased such that it eventually exceeds the extension of the (x, y) domain; in this
case the hierarchy of the representation becomes inverted and maps, e.g., in case of
the visual map in Figure 4, separate into representations n = 1,2, ... of a set of
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Fig. 5 Dimension-reduction: This figure shows how points in a two-dimensional array might be
mapped into a three-dimensional feature space with components ¢, ¢, and ¢, representing such
features as visual field location and ocular dominance. Dimension-reduction models often constrain the
map to fill the input space with near-uniform density while maintaining continuity. This leads to maps
where rapid changes in one feature vector component are correlated with slow changes in other vector
components. (ERwIN et al. 1995)

orientations ¢,, such that each representations keeps ¢, fixed and fills out the visual
coordinates (x, ), i.e., there develops a first map g; — (x;, y;, ¢,), a second map
0; = (X, ¥j» ¢2), etc. (OBERMAYER et al. 1992).

Visuo-Motor Control in Robotics

In this section we want to discuss first how a generalization of the Delaunay
triangulation algorithm described above can serve, in principle, to solve the
problem of biological visuo-motor control. This approach, followed in HESSELROTH
et al. (1994) and SARKAR and ScHULTEN (1995), will be outlined first. We describe
then an algorithm which is modelled in closer analogy to biological motor control
and discuss its application to a SoftArm robot system.

The SoftArm Robot System

Movement of higher biological organisms is the result of information processing in
a complex hierarchy of motor centers within the nervous system. To date, there is
still no general consensus about how biological neural networks actually generate
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voluntary movement. Neurophysiological studies, on one side, provide the essential
data on which a top down modelling approach can be based. On the other side, there
is the engineering discipline of robotics which seeks to design robust and adaptible
robotic systems, often under the ‘perspective of a specific task. In contrast to
biology, robotic control applications based on artificial neural networks are, to
a large extent, still confined to systems capable of performing simple sensory-
to-motor transformations. Here we seek to combine both sides, engineering and
biology, while focusing on the implementation of biologically motivated neural
algorithms on a pneumatically driven robot arm (SoftArm). The SoftArm’s
hysteretic behavior makes this arm difficult to control by conventional methods
with the accuracy needed for real-world applications. On the other hand, its unique
physical flexibility is a very desirable quality in many applications, such as various
human-robot interaction scenarios.

The SoftArm is modeled after the human arm and has four joints resulting in five
degrees of freedom. It exhibits the essential mechanical characteristics of skeletal
muscle systems employing agonist-antagonist pairs of rubbertuators which are
mounted on opposite sides of rotating joints (see Figure 6). When air pressure in
a rubbertuator is increased, the diameter of the tube increases, thereby, causing the
length of the tube to decrease and the joint to rotate. The motion of each joint j,
hence, is controlled by two pressure variables of the corresponding pair of tubes (see
Figure 6), the average pressure g; in the two tubes and the pressure difference Ap;
between the two tubes. Pressure difference drives the joints, average pressure
controls the force (complience) with which the motion is executed. This latter
feature allows operation at low average pressures and, thereby, allows one to carry
out a complient motion of the arm. This makes such robots suitable for operation in
a fragile environement, in particular, allows direct contact with human operators.
The price to be paid for this advantage is that the response of the arm to
signals (Py, P2, ..., Px)* and (Apy, Ap,, ..., Apy)* cannot be described by »a priori«
mathematical equations, but rather must be acquired heuristically.

One expects that the response characteristics change during the life time of the arm
through wear, after replacement of parts and, in particular, through hysteretic effects.
The hysteretic behavior of the arm is demonstrated in Figure 7 which shows a slow
relaxation to a steady state, hysteresis in positioning and a change in the
pressure-position relationship over time (long-term drift). In consequence, accurate

to link i

Fig. 6 Agonist and antagonist rubbertuator are connected via a chain across a sprocket. Their relative
lengths determine the joint position 8;, while the sum of the pressures P, + P, modulates the joint
stiffness.
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Fig. 7 Mechanical characteristics of the Soft4rm’s joint 1, caused by the use of rubbertuators : (top) Slow
relaxation to the final position in pressure control mode. (middle) Hysteresis when alternating between
two pressure vectors and applying a constant pressure increment/decrement AP to rubbertuator 1 and 2.
When the extreme pressures are reached, the direction is reversed. (bottom) Long-time drift of the
position while repeatedly changing the total pressure by +1%. (HESSELROTH et al. 1994)
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Fig. 8 Diagram of the robot system, showing SoftArm, air supply, control electronics and workstation.
The host computer includes a software layer (robot control, neural network and image processing
programs) and the hardware components (serial interface and video input).

positioning of the SoftArm presents a challenging problem. For a more detailed
introduction to the mechanics of the SoftArm see HESSELROTH et al. (1994).
Figure 8 illustrates the complete robot system, including the mechanical side
(SoftArm, air supply, servo valve units), the interface (servo drive units) and the
controlling workstation. The host computer, currently a Hewlett Packard
HP755/99, includes the hardware components (terminal server interface, video
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input card) and the software layer (robot control library, neural network and image
processing program).

Visual feedback is provided by color video cameras. For maximum flexibility,
vision preprocessing is implemented in software rather than in hardware. A flow
chart of the video stream is illustrated in Figure 9. The use of a frame grabber to
import the video signals in a JPEG encoded format minimizes the amount of data to
be transferred between the video board and workstation memory. The location of
the gripper is extracted from the video frames through a simple color separation,
yielding one color component. This is then thresholded and the center of mass of the
remaining image calculated. Coding the gripper in a certain color, e.g. red, allows us
to weaken the workspace scenery restrictions in terms of background and lighting
conditions while, at the same time, keeping the visual preprocessing as simple and
efficient as possible.

The SoftArm can be operated either in position control mode or pressure control
mode. In position control mode, the servo drive units use the joint angle
information, provided by optical encoders attached to the joints, and a classical
feedback loop to control the actual position of the arm. The control is rather
rudimentary and achieves only a low accuracy, mainly limited by the above
mentioned mechanical characteristics.

A satisfactory application of the SoftArm requires an adaptive control mecha-
nism which can overcome the nonlinear and hysteretic mechanical limitations. The
algorithm we seek, in its simplest ramification, should move the gripper at the end of
the arm, the socalled end effector, to specified positions v in the robot’s
three-dimensional work space V. In its simplest form, the N angles 0, 0,, ..., Oy at
a robot’s joints (we assume presently that N is variable) need to be specified as to
achieve the desired position v of the arms gripper®. For this purpose one needs to

neural

/ video input

/ (JPEG) network
Y
decode separate | threshold | _| determine
JPEG data | ~ colors it image center of mass

(xy)

Fig. 9 Flow chart of the vision preprocessing: The true color video input, coming as JPEG encoded
data from a Parallax Graphics PowerVideo 700Plus video board, is decoded. After separating the colors
(to extract, e.g., the red components) and thresholding the image, the gripper’s location is determined by
calculating the center of mass for the remaining pixels.
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learn the vector-valued function v(6) where 0 represents the N-dimensional column
vector (04, 02, ..., O)". In case of N = 3, the functional dependence represented
by v(0) is unique (actually, for wide intervals from which angles 6; can be taken,
the function can assume two or more discrete branches), for N >3 a continuum
of possibilities exists to realize end effector positions v. In the latter case one
usually wants to select 6 such that certain conditions are met, e.g., that the arm
reaches around obstacles. The issues are discussed at length in RITTER et al. (1990,
1992). .

The control problem just stated can be solved by conventional robot algorithms.
The situation becomes more difficult, and more interesting, in case that the control
signals actually employed do not specify directly the joint angles, as in case of the
SoftArm in pressure mode. How can one obtain information on the response
characteristics of the robot arm? We have suggested earlier (RITTER et al. 1990,
1992) to employ a pair of stereo cameras. We have demonstrated in conjunction
with an industrial robot (WALTER 1993) and the SoftArm system (HESSELROTH et al.
1994, SARKAR and SCHULTEN 1995) that the signals from the two camera backplanes
can be employed for this purpose, i.e., the robot-camera-computer system can learn,
in fact, to control the arm solely on account of camera images.

Topology Representing Network Algorithm for Visuo-Motor Control

Before we embark on specifying how the topology representing networks can be
trained to control robot motion we need to introduce a concept of utmost practical
importance, the linearly controlled feed-back loop. The idea is that rather than to
learn directly the precise relationship between joint angles and end effector
positions, one learns such relationship only approximately and only for a very
coarse set {v,, s € A} of end-effector positions, i.e., one learns a set of joint angles 0,
s € A for some set A (to be specified later) such that’

v, = v(6). 2]

The remaining control is assigned to linear feed-back loops which are based on the
iteration

v = V(é(n — 1) + A(Viarget — v(n_l))) B3l

where A, is the Jacobian tensor 96/0v evaluated at the locations 6;, s € A. 6(n — 1)
represents _ the joint angles after n—1 iterations defined through
v~ 1 = y[f(n — 1)]. This expansion attempts to move the end effector to the target
location V. by linearly correcting the joint angles on account of the remaining
deviation Ve — v V. Repeated application of [3], starting with v = v(6,),
leads to a series of end effector positions v\, v?, ... which approaches Vigge: for
suitable A,. Schemes for acquiring 6, and A, have been presented in RITTER et al.

2 We will not be concerned at present with the need to properly orient the gripper to grasp an object.

3 The function v(...) specifies the relationship between the joint angles of the robot arm and the position
of its end-effector in the work space; this function is determined through the geometry of the robot arm
and is available through the actual operation of the robot in joint angle mode: a controller specifies 6, and
the arm moves into a certain position. Likewise, one may use pressures to control the robot operatingin
pressure mode. The latter mode is actually employed in most applications.
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(1992, 1990) and their capacity for real applications has been demonstrated in
WALTER (1993).

The choice of mesh points (centers of Voronoi Polyhedra) is the most essential
part of the algorithm. As explained above, there are two aspects involved, the
development of a Voronoi diagram and the development of the associated Delaunay
tesselation. The control algorithm considered here actually generates, in a training
period, a table look-up program. Equations [2] and [3] concern actually the table
entries. They state that each Voronoi polyhedron, labelled s, will be associated with
a vector 6 which represents the angles specifying, through the joint angles, the zero
order conformation of the robot arm. However, each polyhedron stores also a linear
correction scheme, specified through the tensor A,; the latter scheme allows
approach to a target point V., which deviates from the point v(f,). One can
consider the present approach an exercise in triangulation for function approxima-
tion, except that the function is an iterative process.

It is now quite obvious how the mesh points are chosen. In a training period one
issues requests to the robot to move to target points Viee(?), ¢ = 1,2, ... This
training set yields then a Voronoi diagram with associated Delaunay tesselation as
outlined above. The difference to the earlier algorithm is that the system establishes
at the same time the table entries 6, and A,. However, in learning the table entries the
Delaunay triangulation comes to play a cardinal role. This role arises from the
justifiable expectation that neighbouring Voronoi polyhedra s and s’ should assume
eventually similar table entries (6, A,) and (6, A/). This can be exploited through
cooperation of neighbouring polyhedra in acquiring the proper table entries. This
cooperation extends initially over next neighbours, next-next nearest neighbours,
etc. and involves a significant spill over of entry updates from one polyhedron to
others. However, in the course of the training, the cooperation becomes more
narrowly focussed to immediate neighbours and also involves gradually less of
a spill over of entries. Finally, units learn only individually, fine tuning only their
own entries. This cooperation furnished through the Delaunay tesselation does not
only speed up the training, since each training step during the early phase of the
training involves many Voronoi cells, but it also increases the radius of convergence
of the algorithm dramatically. This radius is defined by the initial entries
(04t = 0), A((t = 0))_of the Voronoi cells; if the entries are too far off, the system
may never find good (6, A,) entries; cooperation ameliorates the effect of a few cells
which may never acquire proper table entries if they would rely solely on their own
(poor) initial (¢ = 0), (t = 0)) entries; however, they acquire through coopera-
tive learning better table entries from their neighbours and the schemes for
acquiring proper table entries converges for them as well.

The Delaunay tesselation can play also an essential role after training is completed.
One can envoke cooperation between neighbouring Voronoi cells to average the motor
response. This is useful for biological neurons, the signals of which are limited in
accuracy to few bits. Averaging can effectively reduce the error of control signals by

a factor of about 1 /]/1_1 where 7 is the number of participating units.
A Biologically Inspired Control Algorithm

Instead of the formal approach outlined above we consider now a simpler algorithm
for linking visual input to motor output, which is inspired by neurobiological
observation. This approach involves the application of self-organizing feature maps,
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originally proposed by KOHONEN (1982), as the basic information processing
element from which neural networks capable of visuo-motor control are built. Such
networks have been successfully applied to the problem of controlling movement in
several technical applications (RITTER and SCHULTEN 1986, RITTER et al. 1989,
MARTINETZ et al. 1990, CortoN et al. 1991, WALTER and SCHULTEN 1993). In
common with a number of previous studies of motor control (for example that of
KuPERSTEIN 1988), our present approach involves the development of connections
between an input (sensory) and output (motor) map, the connections between these
maps being achieved by means of a learning process. In this regard, the study of
CortoN et al. (1991) is of particular interest, as it extends one general approach
suggested by our group (RirTER et al. 1989). CortoN et al. (1991) define an
architecture that learns to control movement through associations between two
sensory modalities. In the model each neuron within the network receives both
exteroceptive input regarding the visual scene and proprioceptive input indicating
the instantaneous angular positions of the limb segments of the movement system
(e.g. a two jointed planar simulation of the human arm or industrial robotic
manipulator). Through random exploration of the workspace, similar to the
manner in which immature primates perform apparently random motor acts,
neurons within the network are able to develop associations between these different
sensory modalities.

From a biological perspective such an approach is appealing, because of the
ability of the model to fuse different types of sensory input regarding movement
during calculation of the required sequence of motor commands. Such an ability is
frequently cited as a principal reason for the superiority of biological control
systems when compared to artificial movement systems. To evaluate the success of
such a strategy when applied to the problem of accurate positioning of an
end-effector we have employed the basic approach outlined by Corton et al. (1991)
to control our SoftArm.

Neural Control of the SoftArm

To simplify the description of the algorithm, we will first discuss application of
the algorithm for use in the control of 3 joints and a fixed compliance. Figure 10
illustrates the elements of the basic network. Neurons in layer S project via
independent excitatory synapses to a set of motor cells v; responsible for setting
the pressure values of the joints. We assume an input space defined by
M independent sensory input sources. In a biological system these sources might,
for example, correspond to neurons providing tactile input from receptors
distributed over the body surface. In the present work, however, we will be
concerned with proprioceptors, which indicate the respective joint angles of each
- of the segments of the robot arm, as provided by optical encoders mounted at
each joint, and visual receptors which specify the location of a target point of
interest within each camera plane.

Hence, two different types of sensory information converge upon neurons within
the network S. Exteroceptive input

r= [xla X2, X3, x4] [4]
is derived from a Euclidean coordinate system defined by the normalized visual
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Fig. 10 The basic network used to
control movement of the Softdrm. w,
e and s, refer to the joint wrist, elbow
and shoulder joints of the arm respecti-
vely. Definitions of all other quantities

@ @ @ may be found in the text.

fields presented to the network. Proprioceptive input, denoted @, is derived from
the intrinsic coordinate system of the joints, given by the normalized values of the
optical encoders, where

@ = [01, 02, 03] . [5]

The indices 1, 2, 3 specify the wrist, elbow and shoulder joints of the SoftArm,
respectively.

Control of limb movements in the workspace is achieved by modifying the
synaptic weights of the projections from neurons in the sensory layer S to the motor
cells. Each rieuron in the sensory layer has a vector

Vi =i, v, v [6]

associated with it which corresponds to the output of the motor neuron when
activated by a neuron in the sensory layer. This output alters the joint angles by
sending new pressure values to the SoftArm.

During learning, adjustment of v/, the i component of V, is calculated as

Vi = vt — 1) + &(®) h(Wi(2) — vi(z —1)) (7]

where, in this instance, v/(t = 1) represents a random value generated during the
previous iteration of the algorithm leading to movement of a particular limb

152



segment (CoIToN et al. 1991). &(f) determines the magnitude of change in the
synaptic weights as a function of time and is chosen in the following manner (RITTER
et al. 1992) !

8(t) = Eini'ErinBind " (8]
The neighbourhood function A, can be modelled by a Gaussian
hys = exp (=1 — sli*/20(t)*) [
| with width
0(t) = 61 Otin O1n? ™™ [10]

Prior to learning, all components of the vector V are assigned random values
and the total number of learning steps is specified. For each learning step
a sensory input vector U = [r, @] is then formed from exteroceptive input
r given by the values of the endpoint of the limb and proprioceptive input
@ specified by the joint angles of the limb. The Kohonen algorithm is applied to
the sensory layer and the vector of motor signals V, associated with the neuron
s, chosen according to the Euclidean distance criteria proposed by KOHONEN
(1982), in the sensory layer, initiates movement of the arm to a new randomly
chosen position in the workspace. The components of V, are then adjusted
according to [7] and this sequence of operations is repeated for the total number
of learning steps.
Following a suitable number of learning steps, typically 3000, goal-directed
"movements to visual targets can be executed by the network in the following
manner. The limb assumes an initial configuration of joint angles @ correspond-
ing to a position r of the endpoint of the limb in the workspace. A sensory vector
U, concatenated from the Cartesian coordinates of the target position r, and the
current joint angles of the limb, induces excitation of a neuron s in the sensory
layer. This sensory vector codes two physical locations in the workspace: the
target location r, and the current position of the limbr as a function of @.
Excitation of neuron s in the sensory layer results in a new motor vector V; being
sent to the limb simulation causing movement of the endpoint of the limb to
a new position r, corresponding to the set of joint angles @,. A new vector U’ is
then concatenated from r, and @, inducing excitation of neuron s’ in the sensory
layer. The associated motor vector Vy then causes movement of the limb to the
position ry associated with @,. This process continues until the sequence of
positions r, 1y, ry, Iy, ... attained by the endpoint of the limb during movement
to the target point converges within a predefined tolerance to r,, or the same
- neuron is chosen in two consecutive iterations of the process, or the total number
of iterations of the process required by the movement exceeded a predetermined
number, typically ten. In general, movement to a particular target point will
involve a total of three or four iterations of this sequence of steps, though greater
numbers are possible.

Use of this algorithm for control of the SoftArm results in average accuracies in
the region of 12% of the dimensions of the workspace of this system. A number of
factors contribute to this poor performance, including the mechanical characteris-
tics of the SoftArm and the high dimensionality of the problem. The principal
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Fig. 11 Positioning error between gripper and target versus step number using the »neural gas«
algorithm combined with an interpolation strategy. One pixel corresponds to approx. 3 mm.
(HESSELROTH et al. 1994).

problems that arise, however, are the need for a single network to provide a » good «
representation of two distinct sensory input spaces, namely the visual and
proprioceptive spaces, and the discretizing effect that results from the use of small
numbers of neurons to map these input spaces. In general, while the use of larger
number of neurons in the network can lead to some improvements in performance
there is no simple linear relationship between greater numbers of neurons and
accuracy (RITTER 1989).

Through a combination of self-organizing feature maps and interpolation
strategies it is possible to overcome the discretizing problem, to achieve a precise end
effector position control (HESSELROTH et al. 1994) and to orient the gripper properly
for an object to be grasped (SARKAR and SCHULTEN 1995). In addition to the neural
gas algorithm, representing the three-dimensional workspace, the robot also learns
a set of Jacobian matrices for interpolating between positions stored by 200
individual neurons. In Figure 11 we plot the final error between gripper and target
position (in camera pixels) versus the number of learning steps.

Future Directions in Visuo-Motor Control

Biological organisms provide both, the inspiration and the challenge for robotic
systems. They are the basis on which industrial robotic applications, controlled by
artificial neural networks, have to be evaluated. The SoftArm, with it’s highly
nonlinear and hysteretic characteristics, represents an interesting and challenging
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experiment for those neural network architectures. In addition to the positioning we
demonstrated here, more complex tasks, e.g. grasping objects of arbitrary shape,
motion path planning or tracking of moving targets are currently the focus of
research efforts. However, the much more sophisticated capabilities of biological
organisms in terms of visuo-motor control suggest to emphasize the biological
design of the implemented neural networks. A synergy between the engineering
approach of robotics and biologically motivated models of motor learning will, on
one side, lead to a better performance in robotics and, on the other side, elucidate
the manner in which the various motor centers within the cerebral cortex jointly
program and coordinate movement.
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