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Chapter 1

Overview

1.1 Purpose

The MDAPI (molecular dynamics applications programming interface) improves the design of molecular
dynamics (MD) software for the simulation of biomolecules by enabling the separation of source code into
a front end and a computational engine. The computational engine includes all of the code that performs
the numerical computation for each time step of an MD simulation. The front end contains everything else
that is needed for performing an MD simulation, specifically, the setup of the simulation, the analysis of the
results, and all data file processing.

The MDAPI provides a well-defined, extensible interface that allows front ends to inter-operate with engines.
User-friendly front ends can be developed that support a variety of data file formats without concern for
introducing any side effects to the numerical portions of the code. Highly optimized engines can be developed
without having to worry about all of the supporting tasks that are necessary for performing an MD simulation.
Specialized engines can be created to solve particular problems or test new computational methods, all driven
by the same front end.

1.2 Features

The MDAPI is a lightweight C programming interface with an object-oriented design. It compiles into a
C library (tested on Linux and Solaris) to enable linking to either C or C++ programs, and it should be
easily ported to any modern platform. There is no explicit support for Fortran engines, although it should
be straightforward to provide.

The features supported by the MDAPI design are:

• predefined data types for describing the CHARMM force field :::ref:::, topology, and trajectory of a
system of biomolecules;

• communication between front end and engine using data arrays referenced by string identifiers;

• front end control over multiple engines (or multiple instances of the same engine) all running simulta-
neously;

• nonblocking calling semantics for routines that are not designed to return immediately;
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• front end callback routines for data communication during a running simulation;

• engine-defined data types that extend the predefined data types;

• error reporting and handling.

The MDAPI actually provides two interfaces, one for the front end to initialize and control the MD simulation,
and the other for the computational engine to make its data and integration methods available to the front
end. The front end has routines to initialize the engine, write to the engine data arrays, run the simulation
for some number of steps, and read from the engine data arrays to obtain the simulation results. The front
end operates on an engine object that is used for calls through the interface. Similarly, the engine is provided
with a handle to the front end object to be used for its interface calls. The engine is required to provide an
initialization routine (constructor), a cleanup routine (destructor), and a “run” routine that performs the
numerical integration of the molecular system.

The front end interface has been designed, with its most basic features, to allow simple and straightforward
access to an engine. There are also more advanced features, such as the use of asynchronous control within
event loops, callbacks, and error handling, that can provide high performance access to an engine and
facilitate the development of advanced GUI front ends.

The engine interface has been designed to provide minimal interference with the important computational
aspects of molecular dynamics. Most of the interface calls are required for initialization, during which the
engine offers the front end access to data arrays and possibly defines new data types. The “run” routine
that contains the numerical integration loop must also be supplimented with interface calls to increment the
step counter and process front end callback routines.

The MDAPI provides an interface layer that attempts to take on as much responsibility as possible in order
to ease development of front ends and engines. The MDAPI collects the data arrays and types offered by the
engine and presents them in a consistent manner to the front end, performing necessary memory management
for dynamically allocated data buffers. Similarly, the MDAPI collects callback routines registered by the
front end and presents them in a simplified manner to the engine. By using string identifiers to reference data
arrays, rather than having hard-coded variable names, and also by permitting engine-defined data types,
the interface is extensible beyond basic MD simulations to more specialized applications. Inter-operability
between front ends and engines is enabled by specifying a standard naming convention for the fundamental
data arrays and types needed for basic MD simulations. The interface to the front end provides routines that
allow the investigation of all data arrays and types offered by the engine. The interface to the engine provides
routines that allow specific knowledge of all data requirements for callbacks and permit asynchronous control
of callback processing to improve performance.

1.3 Current Implementation

The current implementation of MDAPI is single-threaded and blocking, with the asynchronous control
routines stubbed. The idea has been to finalize a simplest version of MDAPI that still conforms to the
interface specification detailed in this document. A more advanced implementation of the MDAPI is expected
to follow that provides the following enhancements:

• dynamic loading of engines (dlopen),

• multi-threaded execution (Posix threads),

• remote communication between front end and engine (TCP/IP sockets).



1.4. REMAINDER OF DOCUMENT 9

The current implementation will form the basis for future enhancements.

MDAPI is being specifically tailored to the design needs of NAMD :::ref:::, with planned deployment into
NAMD 3. The long range vision is for VMD :::ref::: to use the MDAPI to provide front end support
for controlling a full-featured NAMD computational engine, as well as special-purpose engines for method
development and other scientific investigation.

1.4 Remainder of Document

This document presents aspects of the MDAPI in an order well-suited to familiarizing a C programmer
as quickly as possible with the interface syntax and semantics. Chapter 2 provides a very brief summary
of molecular dynamics and the potential energy function, then presents the predefined data types and
how they are used for representing a molecular system. Chapter 3 discusses the front end interface, and
Chapter 4 discusses the engine interface, both presented in a tutorial format. Chapter 5 provides the standard
conventions that should be followed by front end and engine implementations to achieve inter-operability
for basic MD simulations. Chapter 6 contains the complete reference for the MDAPI, including all defined
constants, types, and function prototypes, along with the semantics of every interface routine.

The MDAPI uses the following code conventions.

• All names defined by the MDAPI begin with MD to avoid name space conflicts.

• Constants and macro names are always capitalized with underscores used to separate words, e.g.
MD ERR ACCESS, MD SIZEOF.

• Predefined data types are mostly implemented as C typedefed structs, with each word in the name
capitalized, e.g. MD BondPrm, MD Attrib.

• Function names are lowercase after the prefix with underscores used to separate words, e.g. MD init,
MD type memberlist.

Anyone who is interested in the use and development of the MDAPI is welcome to contact its author David
Hardy by email to dhardy@ks.uiuc.edu regarding any questions, suggestions, or bug reports.
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Chapter 2

Molecular Representation

This chapter begins with a brief summary of molecular dynamics (MD) and the potential energy function
used for biomolecules. This is followed by an introduction to the MDAPI predefined data types, first
discussing how they represent individual potential energy terms and bonded connections between atoms,
then describing how arrays of the predefined data types work together to represent the entire molecular
system.

2.1 Molecular Modeling

2.1.1 Molecular dynamics and the potential energy function

A molecular dynamics simulation computes numerically the time evolution of Newton’s equations of motion
for a system of N atoms in 3-dimensional space (i.e. a system of 3N equations),

Fi(r(t)) = mi
d2

dt2
ri(t), for i = 1, 2, . . . , N,

where ri is the position of the ith atom in the system, with mi its mass and Fi its force as a function of all
of the atomic positions. This second-order system is typically recast as a system of 6N first-order ODEs,

d
dt

vi(t) =
1
mi

Fi(r(t))

d
dt

ri(t) = vi(t),

and solved as an initial value problem, which requires initial positions ri = (xi, yi, zi)T and velocities vi =
(ẋi, ẏi, żi)T at time t = 0. The numerical integration method of choice for solving this system is the leapfrog
(velocity-Verlet) integrator,

v(k+1/2)
i = v(k)

i +
∆t
2

f (k)
i

mi
,

r(k+1)
i = r(k)

i + ∆tv(k+1/2)
i ,

f (k+1)
i = Fi(r(k+1)),

v(k+1)
i = v(k+1/2)

i +
∆t
2

f (k+1)
i

mi
,
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shown here propagating the ith atom in the system from step number k to step number k + 1 using a time
step of size ∆t. Although many other numerical integration methods are possible, the best in practice are
variants of leapfrog, which has the virtue of being an explicit, second-order accurate method needing only
one force evaluation per time step. For modeling biomolecules of scientific interest, N is in the range of
10, 000 to 1, 000, 000 atoms, and numerical stability requires that ∆t ≈ 1fs, where 1 femtosecond = 10−15

seconds. This means that the relatively short, on biological timescales, simulation of one nanosecond needs
around a million time steps.

Evaluating the force is the most computationally demanding part of molecular dynamics. The force is the
negative gradient of a scalar potential energy function,

F(r) = −∇U(r),

and, for systems of biomolecules, this potential function involves the summing,

U(r) =
∑

Ubonded(r) +
∑

Unonbonded(r),

over a large number of bonded and nonbonded terms. The bonded potential terms involve 2–, 3–, and 4–
body interactions of covalently bonded atoms, with O(N) terms in the summation. The nonbonded potential
terms involve interactions between all pairs of atoms (usually excluding pairs of atoms already involved in a
bonded term), with O(N2) terms in the summation, although fast evaluation techniques are used to compute
good approximations to their contribution to the potential with O(N) or O(N logN) computational cost.

2.1.2 Bonded potential energy terms

The bonded potential terms involve 2–, 3–, and 4–body interactions of covalently bonded atoms.

The 2–body spring bond potential describes the harmonic vibrational motion between an (i, j)–pair of
covalently bonded atoms,

Ubond = k(rij − r0)2,

where rij = ‖rj − ri‖ gives the distance between the atoms, r0 is the equilibrium distance, and k is the
spring constant.

The 3–body angular bond potential describes the angular vibrational motion occurring between an (i, j, k)–
triple of covalently bonded atoms,

Uangle = kθ(θ − θ0)2 + kub(rik − rub)2,

where, in the first term, θ is the angle in radians between vectors rij = rj − ri and rkj = rj − rk, θ0 is the
equilibrium angle, and kθ is the angle constant. The second term is the Urey–Bradley term used to describe
a (noncovalent) spring between the outer i and k atoms, active when constant kub 6= 0, where, like the spring
bond, rik = ‖rk − ri‖ gives the distance between the pair of atoms and rub is the equilibrium distance.

The 4–body torsion angle (also known as dihedral angle) potential describes the angular spring between the
planes formed by the first three and last three atoms of a consecutively bonded (i, j, k, l)–quadruple of atoms,

Utors =

{
k(1 + cos(nψ + φ)) if n > 0,
k(ψ − φ)2 if n = 0,

where ψ is the angle in radians between the (i, j, k)–plane and the (j, k, l)–plane. The integer constant n is
nonnegative and indicates the periodicity. For n > 0, φ is the phase shift angle and k is the multiplicative
constant. For n = 0, φ acts as an equilibrium angle and the units of k change to potential/rad2. A
given (i, j, k, l)–quadruple of atoms might contribute multiple terms to the potential, each with its own
parameterization. The use of multiple terms for a torsion angle allows for complex angular variation of the
potential, effectively a truncated Fourier series.
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2.1.3 Nonbonded potential energy terms

The nonbonded potential terms involve interactions between all (i, j)–pairs of atoms, usually excluding pairs
of atoms already involved in a bonded term. Even using a fast evaluation methods the cost of computing
the nonbonded potentials dominates the work required for each time step of an MD simulation.

The Lennard–Jones potential accounts for the weak dipole attraction between distant atoms and the hard
core repulsion as atoms become close,

ULJ = (−Emin)

[(
Rmin

rij

)12

− 2
(
Rmin

rij

)6
]
,

where rij = ‖rj − ri‖ gives the distance between the pair of atoms. The parameter Emin = ULJ(Rmin) is the
minimum of the potential term (Emin < 0, which means that −Emin is the well-depth). The Lennard–Jones
potential approaches 0 rapidly as rij increases, so it is usually truncated (smoothly shifted) to 0 past a cutoff
radius, requiring O(N) computational cost.

The electrostatic potential is repulsive for atomic charges with the same sign and attractive for atomic
charges with opposite signs,

Uelec = ε14
Cqiqj
ε0rij

,

where rij = ‖rj − ri‖ gives the distance between the pair of atoms, and qi and qj are the charges on
the respective atoms. Coulomb’s constant C and the dielectric constant ε0 are fixed for all electrostatic
interactions. The parameter ε14 is a unitless scaling factor whose value is 1, except for a modified 1–4
interaction, where the pair of atoms is separated by a sequence of three covalent bonds (so that the atoms
might also be involved in a torsion angle interaction), in which case ε14 = ε, for a fixed constant 0 ≤ ε ≤ 1.
Although the electrostatic potential may be computed with a cutoff like the Lennard–Jones potential, the 1/r
potential approaches 0 much more slowly than the 1/r6 potential, so neglecting the long range electrostatic
terms can degrade qualitative results, especially for highly charged systems. There are other fast evaluation
methods that approximate the contribution to the long range electrostatic terms that require O(N) or
O(N logN) computational cost, depending on the method.

2.2 Predefined Data Types

The MDAPI predefines a collection of data types to represent the molecular system. The primary data
types provide storage for fundamental numeric quantities and fixed buffer length strings. These provide data
type components with which larger derived types are constructed, useful for abstracting parameters for the
potential terms discussed in the previous sections or representing the bond connections between atoms.

Engines are able to extend the available collection of data types by defining their own derived data types.
This is done by agglomerating previously defined types, either primary or derived, as member fields of the
new type, much like a C structure. More detailed information about this type definition process is available
in Sec. 4.1.4. The front end has several routines available to dynamically discover new types, enabling use
of an object of that type and efficient access to its members. More information about the front end type
discovery routines is available in Sec. 3.3.3.

The purpose of abstracting types is to allow use of the MDAPI to be extended beyond providing communica-
tion of basic MD data, and doing so in a manner that requires no modification to the MDAPI specification.
Towards this purpose, it is necessary to establish well-defined numeric types so that the interface can reliably
provide byte offsets to type members and perform byte reordering on data arrays to facilitate communication
between a front end and engine running on remote machines of different architectures.
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The predefined data types are presented in the next two sections, followed by their use in representing a
molecular system with the force field potentials discussed previously. The C type definitions for the predefined
data types may all be found in the mdtypes.h header file.

2.2.1 Primary data types

The primary data types are used as components for constructing derived data types. The primary types
include fundamental numeric quantities, some taken directly from C. Every type has a name that can be
used in variable declarations and a number that is used to abstractly refer to and derive from that type.

The following table lists the nine primary types by name, numeric constant, number of bytes, and purpose.

name numeric constant number of bytes purpose
char MD CHAR 1 single character
int32 MD INT32 4 (32 bits) integer
float MD FLOAT 4 single precision floating point
double MD DOUBLE 8 double precision floating point
MD Fvec MD FVEC 12 3D vector, single precision
MD Dvec MD DVEC 24 3D vection, double precision
MD Name MD NAME 8 short string for atom names
MD String MD STRING 64 medium-length string
MD Message MD MESSAGE 512 long string

The int32 type should be used as a replacement for C int, since int32 guarantees a 4-byte (32-bit) integer,
unlike C int whose length is architecture dependent. The definitions for the last five table entries are as
follows.

enum {
MD_NAME_SIZE = 8,
MD_STRING_SIZE = 64,
MD_MESSAGE_SIZE = 512

};

typedef struct MD_Fvec_tag { float x, y, z; } MD_Fvec;
typedef struct MD_Dvec_tag { double x, y, z; } MD_Dvec;
typedef char MD_Name [ MD_NAME_SIZE ];
typedef char MD_String [ MD_STRING_SIZE ];
typedef char MD_Message [ MD_MESSAGE_SIZE ];

Note that the member components of MD Fvec and MD Dvec are x, y, and z. The purpose of the 3D vector
types are to represent mathematical vector quantities, such as position, velocity, and force. Although they
appear to be derived from float and double, respectively, they are treated by the MDAPI as primary for
increased efficiency. The string types are meant to store C-style (nil-terminated) strings, which means that
MD Name, MD String, and MD Message can accomodate strings of length 7, 63, and 511, respectively.

There are two other related constants for int32.

enum {
MD_INT32_MIN = -2147483648,
MD_INT32_MAX = 2147483647

};
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2.2.2 Derived data types for force field parameters

The MDAPI provides a collection of derived data types designed to represent the potential energy terms
discussed previously. The parameterization of the force field (i.e. the constants in the potential energy terms)
are determined based on the kinds of atoms involved in interactions.

Each atom has a type, for instance oxygen, hydrogen, or carbon. The MD AtomPrm data type contains
parameters for each type of atom present in the system.

typedef struct MD_AtomPrm_tag {
double emin; /* Lennard-Jones energy min (kcal/mol) */
double rmin; /* Lennard-Jones distance for emin (A) */
double emin14; /* modified 1-4 energy min (kcal/mol) */
double rmin14; /* modified 1-4 distance for emin14 (A) */
MD_Name type; /* string to identify atom type */

} MD_AtomPrm;

The type member is a short string indicating the type of the atom. For the CHARMM force field, this string
is alphanumeric of length no longer than four characters. The emin and rmin members are parameters for
determining the minimum energy Emin and corresponding distance Rmin for this atom type when involved
in a nonbonded Lennard–Jones interaction with another atom. The actual parameters for the potential term
are determined by combining the emin and rmin values for both atom types involved in the interaction. For a
pairwise interaction between atom types i and j, the minimum energy is obtained by negating the geometric
average of the two emin values and the corresponding distance is obtained as the arithmetic average of the
two rmin values,

Emin = −
√
emini eminj , Rmin =

rmini + rminj

2
.

Note the units on these quantities: emin is given in energy units kcal/mol and rmin is given in distance
units Å (Angstroms). The emin14 and rmin14 members serve exactly the same purpose, except for deter-
mining parameters for a modified 1–4 interaction. A modified 1–4 interaction occurs if the pair of atoms is
separated by a sequence of three covalent bonds, so that the atoms might also be involved in a torsion angle
interaction. (There is typically an additional simulation parameter that enables the evaluation of modified
1–4 interactions.)

The MD BondPrm data type contains parameters for each type of spring bond interaction occurring between a
pair of covalently bonded atoms, where the type of spring bond is determined by the types of atoms involved
in the bond.

typedef struct MD_BondPrm_tag {
double k; /* spring coefficient (kcal/mol/A^2) */
double r0; /* equilibrium length (A) */
MD_Name type[2]; /* strings to identify atom types */

} MD_BondPrm;

The type member is a two-element short string array to label the two atom types comprising this bond. The
spring coefficient k is given in units kcal/mol/Å

2
, and the equilibrium length r0 is given in distance units Å.

The MD AnglePrm data type contains parameters for each type of angle interaction occurring between a
sequence of three covalently bonded atoms, where the type of angle is determined by the types of atoms
involved in the angle.

typedef struct MD_AnglePrm_tag {



16 CHAPTER 2. MOLECULAR REPRESENTATION

double k_theta; /* coefficient for theta (kcal/mol/rad^2) */
double theta0; /* equilibrium angle (radians) */
double k_ub; /* coef for Urey-Bradley term (kcal/mol/A^2) */
double r_ub; /* equil length for Urey-Bradley term (A) */
MD_Name type[3]; /* strings to identify atom types */

} MD_AnglePrm;

The type member is a three-element short string array to label the three atom types comprising this angle.
The atom types are intended to be listed consecutively, corresponding to the sequence of covalent bonds.
The angle coefficient k theta is given in units kcal/mol/rad2, and the equilibrium angle theta0 is given in
angular units radians. The Urey–Bradley coefficient k ub is given in units kcal/mol/Å

2
, and the equilibrium

distance r ub is given in distance units Å.

The MD TorsPrm data type contains parameters for each type of torsion angle interaction occurring between
a sequence of four covalently bonded atoms, where the type of the torsion angle is determined by the types
of the atoms involved in the torsion angle.

typedef struct MD_TorsPrm_tag {
double k_tor; /* torsion coef (kcal/mol for n>0 OR kcal/mol/rad^2) */
double phi; /* phase shift (radians) */
int32 n; /* periodicity */
int32 mult; /* multiplicity of torsion */
MD_Name type[4]; /* strings to identify atom types */

} MD_TorsPrm;

The type member is a four-element short string array to label the four atom types comprising this torsion
angle. The atom types are intended to be listed consecutively, corresponding to the sequence of covalent
bonds. The integer constant n is nonnegative, indicating the periodicity of the torsion angle. The torsion
coefficient k tor is given in units kcal/mol for n > 0 or units kcal/mol/rad2 for n = 0. The phase shift
angle phi is given in angular units radians. The mult member indicates the multiplicity of this torsion
angle interaction. The value mult = 1 indicates that this type of torsion angle contains only one term
(whose parameters are defined by the other members). For a torsion angle of multiplicity m > 1, the value
mult = m indicates that this type of torsion angle contains m terms. These additional terms are stored
using consecutive elements in an array of MD TorsPrm, the details of which will be discussed in Sec. 2.3.2.

The MD NbfixPrm data type contains parameters that define correction constants for a Lennard–Jones inter-
action, overriding the usual rules for combining pairs of constants from two MD AtomPrm data.

typedef struct MD_NbfixPrm_tag {
double emin; /* Lennard-Jones energy min (kcal/mol) */
double rmin; /* Lennard-Jones distance for emin (A) */
double emin14; /* modified 1-4 energy min (kcal/mol) */
double rmin14; /* modified 1-4 distance for emin14 (A) */
int32 prm[2]; /* index MD_AtomPrm array */
MD_Name type[2]; /* strings to identify atom types */

} MD_NbfixPrm;

The type member is a two-element short string array to label the two atom types. The prm member is a
two-element int32 array containing the indices to the array of MD AtomPrm indicating the particular atom
parameter elements that are being redefined (see Sec. 2.3 for details). The redefinition explicitly assigns

Emin = emin, Rmin = rmin
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for this type of Lennard–Jones interaction. As before, emin is given in energy units kcal/mol and rmin is
given in distance units Å. The emin14 and rmin14 serve the similar purpose of overriding the modified 1–4
interaction parameter values.

2.2.3 Derived data types for molecular topology

The MDAPI provides a collection of derived data types designed to represent the molecular topology. These
data types gather together parameters for each individual atom and define the connections between covalently
bonded atoms. The following data types each contain int32 members that refer either to the individual
atoms in the system or to the force field parameter data types previously discussed. Sec. 2.3 describes
the representation of the entire macromolecule using arrays of the force field parameter data types and the
topology data types, and these int32 members are indices into the arrays. However, for the presentation of
the topology data types, simply accept the fact that every atom in the system has a unique identification
number, as does every atom type (MD AtomPrm), bond type (MD BondPrm), angle type (MD AnglePrm), and
torsion type (MD TorsPrm).

Each individual atom in the system has associated parameters that are contained in the MD Atom data type.

typedef struct MD_Atom_tag {
double m; /* mass (AMU) */
double q; /* charge (e) */
int32 prm; /* index MD_AtomPrm array */
int32 notused; /* padding */
MD_Name name; /* string to identify atom name */
MD_Name type; /* string to identify atom type name */

} MD_Atom;

The name member is a short string indicating the name of the atom. For the CHARMM force field, this name
field labels an atom by an alphanumeric string of length no longer than four characters. The type member
plays the same role as name, only for labeling the atom type. The prm member refers to the MD AtomPrm
parameters for this type of atom. The mass of the atom m is given in AMU (atomic mass units), and the
charge q is given in e units (electron charge units). The notused member is provided to pad the struct for
8-byte word alignment, needed for the containment of word-aligned 8-byte numeric quantities m and q.

Covalent bonds between pairs of atoms are contained in the MD Bond data type.

typedef struct MD_Bond_tag {
int32 atom[2]; /* index MD_Atom array */
int32 prm; /* index MD_BondPrm array */

} MD_Bond;

The 2-element atom array identifies the atoms by number. The prm member identifies, also by number, the
spring bond interaction parameters stored using data type MD BondPrm.

Angular bonds between a sequence of three atoms are contained in the MD Angle data type.

typedef struct MD_Angle_tag {
int32 atom[3]; /* index MD_Atom array */
int32 prm; /* index MD_AnglePrm array */

} MD_Angle;
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The 3-element atom array indentifies the atoms by number. The prm member identifies, also by number, the
angle bond interaction parameters stored using data type MD AnglePrm.

Torsion angles between a sequence of four atoms are contained in the MD Tors data type.

typedef struct MD_Tors_tag {
int32 atom[4]; /* index MD_Atom array */
int32 prm; /* index MD_TorsPrm array */

} MD_Tors;

The 4-element atom array identifies the atoms by number. The prm member identifies, also by number, the
torsion angle interaction parameters stored using data type MD TorsPrm.

Sometimes it is necessary to explicitly exclude pairs of atoms from nonbonded interactions. (This is as
opposed to the implicit exclusions that result when, say, two atoms are covalently bonded.) Explicit excluded
pairs of atoms are contained in the MD Excl data type.

typedef struct MD_Excl_tag {
int32 atom[2]; /* index MD_Atom array */

} MD_Excl;

The 2-element atom array identifies the excluded pair of atoms by number.

2.2.4 Summary of derived data types

The previous two sections discussed the derived data types, which contain information about the force field
parameters and the molecular topology. The following table summarizes the collection of all ten derived
data types, listing them by name, numeric constant, number of bytes, and purpose.

name numeric constant number of bytes purpose
MD AtomPrm MD ATOMPRM 40 parameters for each type of atom
MD BondPrm MD BONDPRM 32 parameters for each type of bond
MD AnglePrm MD ANGLEPRM 56 parameters for each type of angle
MD TorsPrm MD TORSPRM 56 parameters for each type of torsion
MD NbfixPrm MD NBFIXPRM 56 parameters to fix nonbonded constants
MD Atom MD ATOM 40 parameters for each individual atom
MD Bond MD BOND 12 bond connections between atoms
MD Angle MD ANGLE 16 angle connections between atoms
MD Tors MD TORS 20 torsion connections between atoms
MD Excl MD EXCL 8 explicit nonbonded exclusions

2.2.5 MD SIZEOF() macro and unit conversion constants

All defined data types, whether predefined by the MDAPI or created by the engine, are assigned a type
number (int32). The MD SIZEOF() macro takes as an argument the type number of a defined data type and
returns in bytes the size of an instance of that type. This permits an elegant way to deal with a defined data
type as a parameter, for instance generically allocating array space for an array of some given data type.

The mdtypes.h header file also defines several unit conversion constants, used as multiplicative factors to
convert a quantity to a different set of units. Each unit conversion constant name, value, and purpose are
listed in the following table.
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named constant value purpose
MD PICOSEC 0.001 convert time from fs to ps
MD FEMTOSEC 1000 convert time from ps to fs
MD ANGSTROM FS 0.001 convert velocity from Å/ps to Å/fs
MD ANGSTROM PS 1000 convert velocity from Å/fs to Å/ps
MD ENERGY CONST 0.0004184 convert energy from kcal/mol to AMU× Å

2
/fs2

MD FORCE CONST 0.0004184 convert force from kcal/mol/Å to AMU× Å/fs2

MD KCAL MOL 1/MD ENERGY CONST convert energy from AMU× Å
2
/fs2 to kcal/mol

MD KCAL MOL A 1/MD FORCE CONST convert force from AMU× Å/fs2 to kcal/mol/Å
MD COULOMB 332.0636 Coulomb’s constant C in units kcal× Å/mol/e2

MD PI π standard mathematical constant
MD RADIANS π/180 convert from angle degrees to radians
MD DEGREES 180/π convert from radians to angle degrees

2.3 Representing the Molecular System

The predefined data types presented in the previous section must be used together to represent the entire
molecular system. This is accomplished by defining arrays of the data types. The molecular topology data
types define the individual atoms in the system (MD Atom), along with the connections between atoms: co-
valent bonds (MD Bond), angle bonds (MD Angle), dihedrals (MD Tors), and impropers (MD Tors). (Torsion
angles are categorized by the CHARMM force field as either dihedrals or impropers.) Each of these con-
tributes potential energy terms, where pairs of atoms contribute nonbonded terms and the bonds, angles,
dihedrals, and impropers all contribute bonded terms. These terms all have constant parameters, many
of which are determined by the types of the atoms involved in the interaction. The force field parameter
data types provide these atom type dependent parameters: nonbonded interaction parameters (MD AtomPrm),
bond parameters (MD BondPrm), angle parameters (MD AnglePrm), dihedral parameters (MD TorsPrm), and im-
proper parameters (MD TorsPrm). The two remaining derived data types provide corrections to the potential
terms: explicit nonbonded exclusions (MD Excl) that list excluded pairs of atoms and corrected nonbonded
interaction parameters (MD NbfixPrm) that fix pairs of constants (derived from MD AtomPrm).

2.3.1 Required data arrays

The N atoms of the system are represented by an N -element array of MD Atom (indexed 0 . . . N − 1). The
trajectory of the system is defined by corresponding N -element arrays of type either MD Dvec or MD Fvec that
contain positions, velocities, and forces, each with the same atom ordering as the MD Atom array. The other
molecular topology and force field parameter data types also each have an associated array. The topology
arrays associate force field parameters with their elements. This is accomplished using the prm member in
the topology data types as the index into the corresponding force field parameter array.

The MDAPI provides to the front end controlled access to the engine data arrays, with the front end
responsible for setting up the molecular system by initializing the data arrays and the engine responsible for
evaluating the force field and integrating the system. The data arrays are accessed by string name identifiers,
some of which are required to be present to enable front ends to inter-operate with engines. The following
table presents the subset of the required data arrays that directly represent the molecular system, listed by
name.
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array name data type purpose and properties
"atom" MD Atom parameters required for each atom

defines ordering of atoms in system
indexes "atomprm" array

"pos" MD Dvec or MD Fvec position for each atom
uses same ordering as "atom"

"vel" MD Dvec or MD Fvec velocity for each atom
uses same ordering as "atom"

"force" MD Dvec or MD Fvec force for each atom
uses same ordering as "atom"

"bond" MD Bond covalent bonds in system
references atoms using "atom" ordering
indexes "bondprm" array

"angle" MD Angle angle bonds in system
references atoms using "atom" ordering
indexes "angleprm" array

"dihed" MD Tors dihedral angles in system
references atoms using "atom" ordering
indexes "dihedprm" array

"impr" MD Tors improper angles in system
references atoms using "atom" ordering
indexes "imprprm" array

"excl" MD Excl excluded nonbonded pairwise interactions
references atoms using "atom" ordering

"atomprm" MD AtomPrm nonbonded atom parameters
based on atom types

"bondprm" MD BondPrm covalent bond parameters
based on atom types involved in bond

"angleprm" MD AnglePrm angle bond parameters
based on atom types involved in angle

"dihedprm" MD TorsPrm dihedral angle parameters
based on atom types involved in dihedral

"imprprm" MD TorsPrm improper angle parameters
based on atom types involved in improper

"nbfixprm" MD NbfixPrm corrections to nonbonded parameters
references pairs of "atomprm" to be fixed

There is some complication involved with having arrays of molecular topology data types with elements that
index arrays of force field parameters. The molecular topology data types could have instead been designed
to include the storage of force field parameters, eliminating the need for most of the force field parameter
data types except perhaps for the nonbonded Lennard–Jones interaction parameters. However, notice that
the molecular topology data arrays have a O(N) storage, requiring linear space in the number of atoms,
whereas the force field parameters require only linear space in the number of atom types, which does not grow
with the size of the system. In fact, the bound is a reasonably small constant when considering biological
systems. The data structures presented here turn out to provide a significant savings in memory storage over
the alternative of combining force field parameters with molecular topology data. Furthermore, the choice
to separate force field parameters from molecular topology data matches the data file structuring used by
other MD software packages.
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2.3.2 Torsion angle multiplicity

Recall from Sec. 2.2.2 that a given torsion angle (either dihedral or improper) might contribute several terms
to the potential energy, each with a different set of force field parameters. This is handled by having the
particular "dihed" or "impr" torsion angle index a consecutive sequence of elements in the corresponding
force field parameter array "dihedprm" or "imprprm". The length of this sequence is controlled by the mult
member of the MD TorsPrm element, which should always give the count of the remaining elements in the
parameter set, starting with itself.

For example, suppose that the "dihedprm" array has in its kth entry a set of dihedral parameters with
multiplicity 1. This would mean (permitting an abuse of C language notation) that:

dihedprm[k] == { ... , mult == 1, ... }

Now suppose that the next array element begins a set of parameters for a dihedral interaction with multi-
plicity 4. This means that the parameters would be stored in the next four entries with:

dihedprm[k+1] == { ... , mult == 4, ... }
dihedprm[k+2] == { ... , mult == 3, ... }
dihedprm[k+3] == { ... , mult == 2, ... }
dihedprm[k+4] == { ... , mult == 1, ... }

In case the dihedral from the jth entry of the MD Tors "dihed" array uses this particular multiplicity 4
parameter set, it would index the first entry of the "dihedprm" sequence:

dihed[j] == { ... , prm == k+1, ... }

2.3.3 Nonbonded exclusions

Nonbonded exclusions are vaguely expressed as “the exclusion of pairwise interactions involving atoms that
already interact within some molecular bond.” However, this notion must be defined more precisely when
initializing an MD simulation.

Software packages for MD simulation generally define some exclusion policy. This concept goes beyond the
scope of the molecular representation enabled by the mdtypes.h header file definitions. The engine would
need this supplied as a parameter through some additional engine data array not already discussed. The
NAMD software package defines the "exclude" parameter for use in simulation configuration files to be set
to one of the following values:

"none" no nonbonded interactions are to be excluded based on atomic bonds

"1-2" exclude nonbonded interactions between atoms that are covalently bonded (in other words, pairs
that are in a 2-atom sequence)

"1-3" exclude nonbonded interactions between atoms that are covalently bonded or that are both covalently
bonded to the same atom (in other words, pairs that are in a 3-atom sequence)

"1-4" exclude nonbonded interactions between atoms that are covalently bonded or that are both covalently
bonded to either the same atom or to a pair of covalently bonded atoms (in other words, pairs that
are in a 4-atom sequence)
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"scaled1-4" exclude "1-3" interactions and modify the interaction parameters between pairs of atoms
that are the endpoints of a 4-atom sequence to (this would involve the use of "emin14" and "rmin14"
members in MD AtomPrm and MD NbfixPrm data types along with using the ε14 scaling parameter in the
electrostatic potential)

Notice that "1-4" and "scaled1-4" both include the other exclusion policies as subsets, and there is a
nesting of exclusion policy subsets: "1-3" contains "1-2" which contains "none" (the empty set). Also
notice that the exclusion policies are based entirely on sequences of covalent bonds (as is described by the
"bond" array), not by the other bonded types. This means that when employing a "1-3" exclusion policy,
any pairs of atoms appearing in the same "angle" array element would be excluded since an angle must
involve a sequence of 3 covalently bonded atoms, however, there might be additional exclusions since there
might exist a sequence of 3 covalently bonded atoms that do not also define an angle. The most used exclusion
policy for modern MD simulation is "scaled1-4" because this best takes into account quantum mechanical
effects by modifying the nonbonded parameterization for atoms that form the endpoints of torsion angles.

The "excl" array of data type MD Excl is intended to specify additional nonbonded exclusions beyond those
indicated by the exclusion policy. The engine receives a value for the exclusion policy parameter, then,
based on the content of the "bond" array of type MD Bond, builds an exclusion table. The exclusion table
is supplemented by the content of the "excl" array. This means that it would be possible to define, say, a
"1-3" exclusion policy explicitly through the "excl" array, it should not be necessary to do so. Note that
defining a "scaled1-4" exclusion policy does require the use of an additional engine parameter. Although
setting up an exclusion table entails quite a bit of work by the engine, there are additional libraries within
the MDX framework that provide routines to automate this process. See Sec. ?? for details.

2.3.4 Initialization using the MDIO library

The front end is responsible for initializing the force field parameter and molecular topology arrays as well as
providing initial positions and velocities. Fortunately, most of the effort in setting up these arrays, along with
properly setting up the indexing of the force field parameter elements by the topology elements, is automated
by high-level file reading routines using the MDIO library from MDX. These library routines presently read
a very limited set of MD files, mostly a subset of the input files that NAMD supports, including:

• X-Plor force field parameter files,

• X-Plor protein structure files (PSF), and

• PDB coordinate files (ATOM and HETATOM records, ignoring all but the coordinate data).

More information about the MDIO library routines can be found in the mdio.txt documentation. Generating
the data in these files can be done, at least in part, by external programs such as the psfgen utility included
with NAMD. Creating these data files from scratch for a new system is beyond the capabilities of MDX.



Chapter 3

Guide to Using Front End Interface

The front end is responsible for reading and writing files, configuring and invoking the engine, and post-
processing the results. To be able to use the front end interface, include the mdfront.h header file into the
front end source code and link the executable to the MDAPI library. The details for building and linking to
the current MDAPI implementation are presented in Sec. 1.3.

This chapter provides guidelines for using the front end interface, demonstrating basic and advanced features.
Source code examples show how one might use the MDAPI data structures and functions. A complete
presentation of the type definitions, function prototypes, and function calling semantics is deferred until
chapter 6, with the material pertinent to the front end given in Secs. 6.1 and 6.2.

3.1 Brief Summary

The main responsibility of the front end is to setup the data used by the engine, then to run the simulation
by calling MD run() one or more times, and finally to perform any post-processing or output of results from
the simulation. Most of the API routines deal with various ways of communicating data between the front
end and the engine. There are alternative ways of communicating data, some of which improve performance
and decrease memory usage.

The front end interface is object oriented. All functions operate on an engine object of type MD Engine, with
the leading argument a pointer to this object. The most basic functions, along with their general order of
use, are:

• MD init() — constructor (essential)

• MD idnum() — provides ID number for a named data array (essential)

• MD write() — write to an engine data array (some alternatives)

• MD run() — run the simulation (essential)

• MD read() — read from an engine data array (some alternatives)

• MD done() — destructor (essential).

23
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The interface allows running one engine with each MD Engine object. It is possible for a single front end to
run multiple simulations by managing several MD Engine objects. (If the same engine code is being invoked
for each MD Engine object, then the engine code needs to be reentrant.)

There are some initial concepts that need clarification. In order to perform a simulation, an engine needs
data (a lot of it) to be supplied by the front end. Since the data varies quite a bit depending on the type
of simulation and computational methods employed, hard-coded variable names for the data arrays would
be a poor choice. These would require every engine to provide all functionality desired (or at least define
the entire set of variable names). Furthermore, the introduction of any new features or methods would then
require a new version of the interface, as well as updates to all front ends and engines. Instead of using
hard-coded variable names, data arrays are identified by string names. There is a core set of names that
a front end can expect an engine to define (see Chap. 5) for the data that is common to most molecular
dynamics simulations. This provides a basic level of interoperability between front ends and engines, while
also enabling the development of more advanced front ends that can take advantage of features offered by
specialized engines.

Advanced front ends cannot afford to yield control indefinitely (e.g. imagine a GUI application that is
unresponsive to the user). At the same time, advanced implementations of the MDAPI layer are expected
to connect a front end to a remote engine. For instance, the front end might be VMD running on a graphics
workstation connected to the NAMD engine running remotely on a beowulf cluster. This requires allowing
the front end to asynchronously invoke the engine. Interface routines that require a response from the
engine are defined with nonblocking calling semantics, in which the routine returns immediately but is not
necessarily finished with its task. There are interface routines provided to test whether a nonblocking call
has finished or to wait for the call to finish. In order to simplify the MDAPI semantics, only one outstanding
call to a nonblocking routine is allowed, and the call must finish before calling other interface routines. The
following routines are defined with nonblocking semantics:

• MD init()

• MD read()/MD readsub()

• MD direct()

• MD update()

• MD run()

These are all routines that require data to be sent from the engine. Note that MD write()/MD writesub()
do not need to block because they modify buffers local to the front end. The engine is not guaranteed to see
the buffer modifications until the front end calls MD updata() or MD run().

The call to MD run() hides the majority of the work done by the engine. In order to improve performance for
long simulations, it is best to allow the engine to continue to run for a large number of steps. However, the
front end will still need feedback during the simulation, including intermediate trajectories to log for later
imaging and analysis and quantities to be monitored to ensure the stability of the simulation. An advanced
front end might want to enable realtime imaging of the simulation or additional interactions between the
user and the simulation, such as interactive molecular dynamics to allow the user to supply an external force
to the system via a controller. The MDAPI enables the communication of data between the front end and
engine during a running simulation through the use of callbacks. A callback is simply an entry point back
into the front end (i.e. a function) that is called during MD run(), supplying the front end with data from
the simulation or providing the engine with new data.

There are predefined data types (in mdtypes.h) that facilitate the computation of forces and the integration
of a system of atoms. An engine is also permitted to define new types (i.e. C structures) to be offered through
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the MDAPI with routines that allow the front end to “see” the definition of a previously unknown type and
access its members.

Most of the interface routines return zero on success or MD FAIL on failure, in which case an error status
value is set (similar to errno from the C library). Additional routines permit monitoring the error state and
attempting error recovery.

3.2 Basic Features

The interface routines that are essential and most easily used are presented in this section.

3.2.1 Initialization and cleanup

The front end must allocate the engine object and then call its constructor before using any other interface
routine.

MD_Engine *eng;

eng = (MD_Engine *) malloc(sizeof(MD_Engine));
MD_init(eng, "engine", 0, engine_init, engine_done);
MD_wait(eng);

The arguments to MD init() listed after the engine object are the engine name, the flags, the engine initial-
ization routine, and the engine cleanup routine. Note that the MD init() and MD done() routine perform
initialization and cleanup for the interface layer, and these routines in turn invoke the constructor and de-
structor for the particular engine. The flags argument is passed on to the engine init constructor, where the
interpretation is defined by the engine.

The string is the name of the engine. For an implementation of MDAPI that supports dynamic loading of
engines, the name should have the following form:

[[user@]hostname:]pathname

In this case, pass NULL in place of engine init and engine done. The MDAPI layer will then attempt to
dynamically load the engine named pathname on the remote machine hostname logged in as user.

If engine init and engine done are not NULL, then these function pointers are invoked as engine constructor
and destructor, with the name retained as just a label. In this case, the engine is already linked to the front
end executable.

The call to MD wait() demonstrates the simplest use of the synchronization routines, in which the front end
blocks to wait for MD init() to finish. More details regarding synchronization are presented in the following
section.

After the front end has finished performing the simulation using the engine object, the destructor should be
invoked.

MD_done(eng);
free(eng);
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Remember to free the memory used by the engine object after calling the destructor. The call to MD done()
will invoke the engine done cleanup routine that was established by MD init().

3.2.2 Synchronization

Front end interface routines that require a response from the engine, as opposed to those that can be handled
by the MDAPI layer, are provided with nonblocking semantics. This enables advanced front end implemen-
tations to control a remote engine. The nonblocking routines begin a communication exchange with the
engine and immediately return control to the front end. Synchronization is performed by calling MD test()
to test for completion of the communication exchange and MD wait() to wait until the communication is
received. After calling a nonblocking routine, no other front end interface routines (besides MD test() and
MD wait()) may be called until communication has finished.

The MD test() routine immediately evaluates to true (nonzero) if the communication has finished and
otherwise returns false (zero). This can be used within event loops to poll the state of the engine object, so
that the front end does not have yield control indefinitely for the engine to respond.

while (events) {
if (MD_test(eng)) {
/*** finished previous MDAPI routine, now call another ***/

}

/*** check other events ***/

}

Once MD test() evaluates to true, it will continue to return true until another nonblocking MDAPI routine
is called.

The MD wait() routine blocks the front end, waiting for the communication exchange to finish. This is
more straightforward to use in a simple front end that has no other responsibilities than to setup and run a
simulation. The earlier example is repeated.

MD_init(eng, "engine", 0, engine_init, engine_done);
MD_wait(eng);

The MD wait() routine, like most other MDAPI routines, indicates an error by returning MD FAIL and success
by returning zero. See the next section for details.

3.2.3 Error handling and recovery

The engine object maintains an error condition number to report an error, similar to the use of errno by
the C standard library. The error condition number is available through the MD errnum() routine.

errnum = MD_errnum(eng);

There are predefined error constants in mdcommon.h, (included automatically by including mdfront.h). The
engine is also permitted to define its own error conditions that might occur while running the simulation
through MD run().
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Most of the front end interface routines return an integer value to indicate success or failure. These return
values should always be checked in order to make the front end robust (although most of the code examples
here will not do so). Generally, success is indicated by zero and failure is indicated by MD FAIL. If the routine
fails, then the internal error condition number has been set.

Simple use of the engine object might check for errors and report them.

if (MD_init(eng, "engine", 0, engine_init, engine_done)
|| MD_wait(eng)) {

fprintf(stderr, "ERROR %d: %s\n", MD_errnum(eng), MD_errmsg(eng));
exit(1);

}

The MD errmsg() routine is used to return a text string description of the error.

Error recovery is also possible. An error condition is fatal if it is unrecoverable, in which case the use of
the engine object should be terminated by calling MD done(). If the error condition is nonfatal, then the
internal error number can be reset with the MD reset() routine and use of the engine object can continue.
The following example shows detecting and attempting to reset the error condition after a failed call to
MD setlen().

if (MD_setlen(eng, pos_id, n)) {
errnum = MD_errnum(eng);
if (MD_reset(eng)) {
fprintf(stderr, "FATAL ERROR %d: %s\n", errnum, MD_errmsg(eng));
MD_done(eng);
return MD_FAIL; /* return failure to previous routine */

}

/*** use errnum to deal with error and continue ***/

}

The MD reset() routine returns zero if successful. Since this has the side effect of resetting the internal error
condition, it is necessary to first obtain the error number in order to deal with a nonfatal error.

3.2.4 Accessing data arrays

An engine offers the front end access to one-dimensional data arrays used to communicate data between front
end and engine. A single datam value (scalar) may be represented using an array of fixed length one. A
multi-dimensional array can be represented by folding it into a single dimension. The front end is resposible
for doing any necessary file I/O and then initializing the data arrays for the engine. During and perhaps
also after the simulation, the front end will want to access the data arrays in order to provide results to the
user.

Rather than having dedicated routines through which to access individual data arrays or having hard-coded
names for these arrays, the data arrays are accessed by using string names. This allows the interface to be
more flexible so that the MDAPI can be used with specialized MD engines. For the sake of interoperability
between front ends and engines, there are particular names that should be used for data arrays providing
basic MD functionality. The guidelines for these array names, along with their expected data types and
units of measure, are presented in Chap. 5.
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The full list of names of data arrays offered by the engine is available through the MD namelist() routine.

const char **name;
int32 len;

name = MD_namelist(eng, &len);

This routine returns the name list as an array of strings, with its length returned to the variable len.

Although names provide the advantage of flexibility, they are not that fast or easy with which to work. Each
data array has an identification (ID) number associated with it that will be used as its handle. The ID
number is returned by calling MD idnum(). The following example shows an attempt to obtain the ID of the
position array.

int32 pos_id;

pos_id = MD_idnum(eng, "pos");
if (pos_id == MD_FAIL) {
fprintf(stderr, "ERROR: there is no position array\n");
exit(1);

}

Note that the data array names are case sensitive. There is also a function that maps the other direction,
from data ID numbers to names. To continue the previous code example, the following will print pos to
standard out.

printf("%s\n", MD_name(eng, pos_id));

Each engine data array also has a set of attributes associated with it. The attributes of a data array are its
type, used length, maximum allocation, and front end access permissions. The attributes are stored in the
special interface data structure MD Attrib and returned by calling MD attrib() with the array ID number.
The following example demonstrates obtaining and accessing the position array attributes.

MD_Attrib attr;

attr = MD_attrib(eng, pos_id);
printf("position array has attributes:\n");
printf(" type = %d\n", attr.type);
printf(" used length (number of elements) = %d\n", attr.len);
printf(" maximum allocation (number of elements) = %d\n", attr.max);
printf(" access permissions = %x\n", attr.access);

The type number, similar to an ID number, associates the data type with an int32 value. The position array
should be of some predefined 3D-vector type, so its type attribute is equal to either MD DVEC or MD FVEC. See
Sec. 2.2 for more information on the predefined data types defined in mdtypes.h (included automatically by
including mdfront.h). The len and max attributes are given in number of elements (not bytes); it is always
the case that 0 ≤ len ≤ max.

The access attribute indicates permissions that the engine has granted to the front end. These determine
how the front end may use the array, including resizing (which in turn modifies len and/or max), reading,
writing, and availability in callbacks. The access permissions are stored as a bit field, most easily discerned
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using the %x option to printf(); the individual access permission constants are defined in mdcommon.h and
discussed in Sec. 6.1.2. For the position array, the access permissions should include at least reading, writing,
and setting the length.

printf("access permissions for \"%s\":\n", MD_name(eng, pos_id));
printf(" read: %s\n", (attr.access & MD_READ ? "yes" : "no"));
printf(" write: %s\n", (attr.access & MD_WRITE ? "yes" : "no"));
printf(" set length: %s\n", (attr.access & MD_SETLEN ? "yes" : "no"));
printf(" set maximum: %s\n", (attr.access & MD_SETMAX ? "yes" : "no"));

The engine does not automatically know how long the data arrays need to be. The front end must set the
length of most of the data arrays, which can be accomplished by calling the MD setlen() routine with the
ID number of the array and the new length. The length of the position array should be set to the number
of atoms in the system.

MD_setlen(eng, pos_id, natoms);

Doing this changes the position array attribute len to the value natoms. If the position array did not already
have enough elements allocated, then the memory allocation of the array is resized to accomodate (assuming
MD SETMAX permission on the array), which changes the position array attribute max. There are two other
related interface calls: MD setmax() changes the maximum memory allocation, and MD resize() changes
both the length and the maximum allocation.

The front end also needs to be able to write data values into an array and read data values from an array.
The simplest routines for this purpose are MD write() and MD read(), each of which takes the array ID
number and an array buffer along with its length provided by the front end. The MD write() routine copies
the contents of the front end array buffer into the engine data array, whereas MD read() routine copies the
contents of the engine data array into the front end array buffer. Continuing with the position array, after
setting the correct length, the front end must provide the initial atom positions. Assuming that the pos
array declared below contains the initial positions (and that the type attribute is in fact MD DVEC), then the
position array is initialized as follows.

int32 natoms = MD_attrib(eng, pos_id).len;
MD_Dvec *pos = (MD_Dvec *) malloc(natoms * sizeof(MD_Dvec));

/*** read initial positions from data file ***/

MD_write(eng, pos_id, pos, natoms);

After the simulation is finished, the front end might want to retrieve and save the final atom positions.

MD_read(eng, pos_id, pos, natoms);
MD_wait(eng);

Note that since MD read() requires data communication from the engine, it has nonblocking semantics
defined. However, MD write() can store the data with the front end until the engine needs to know it, so
does not have nonblocking semantics.

There are alternative ways for the front end to access engine data arrays, which will be discussed later in
Sec. 3.3.
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3.2.5 Running the simulation

Once the engine has been provided with its data, the front end can run the simulation using the MD run()
routine. This works by integrating the system of atoms for a specified number of steps, for which some of
the computational aspects are presented in Chap. 2.

The MDAPI layer keeps a step number counter that is incremented after each time step. The value of
the step number counter defaults to zero but can be initialized by calling MD firststep(). Suppose the
simulation is a continuation of a previous one-nanosecond simulation using a time step of ∆t = 1.25 fs. Then
it is desirable to use MD firststep() to keep the step numbering consistent.

MD_firststep(eng, 800000);

After some amount of stepping, the step number counter can be checked using MD stepnum().

int32 stepnum;

stepnum = MD_stepnum(eng);

Note that the engine does not really care what value the step number counter has, since it is just a label.

The front end calls MD run() to run the simulation for some specified number of steps. Building on previous
code examples, suppose that the simulation should run for an additional nanosecond using time step ∆t =
1.25 fs and the position coordinates should be saved after every 50 steps for analysis. This can be done using
the following simple code loop.

int32 totalsteps = 800000;
int32 incrstep = 50;
int32 numsteps = 0;
int32 firststep;

/*** assume engine knows that dt=1.25 fs ***/

firststep = MD_stepnum(eng);
while (numsteps < totalsteps) {
if (MD_run(eng, incrstep, 0) || MD_wait(eng)) {
fprintf(stderr, "Error returned by MD_run()\n"

"ERROR %d: %s\n", MD_errnum(eng), MD_errmsg(eng));
exit(1);

}
if (MD_read(eng, pos_id, pos, natoms) || MD_wait(eng)) {
fprintf(stderr, "Error returned by MD_read()\n"

"ERROR %d: %s\n", MD_errnum(eng), MD_errmsg(eng));
exit(1);

}

/*** save position array to file ***/

numsteps += incrstep;
if (MD_stepnum(eng) != firststep + numsteps) {
fprintf(stderr, "Invalid step number counter\n");
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exit(1);
}

}

Note that MD run() has nonblocking semantics.

Although the code loop works correctly, it is not most efficient. The front end does no work while the engine
runs; more importantly, the engine performs no computation while the front end saves the position data.
Although this is not a big concern if the front end and engine are running as a single process on one CPU, it
is a poor utilization of separate front end and engine processes running on different processors. Furthermore,
for a remote front end and engine, every 50 steps of computation is interrupted by two non-overlapping
communication exchanges, with one an array of position coordinates of length N . Finally, there is also some
overhead double buffering the position array and restarting the MD run() routine 16,000 times. All of these
deficiencies will be addressed through the use of advanced features presented in the next section.

3.3 Advanced Features

The interface routines that provide high performance and improve flexibility are presented in this section.

3.3.1 More ways to access data arrays

There are several alternative ways to access data arrays besides MD read() and MD write(). A generalization
of these routines is provided that copies to and from a contiguous sub-array of an engine data array. Like the
former routines, the MD readsub() and MD writesub() also require MD READ and MD WRITE access permission,
respectively, on the array. Both of these routines accept an additional argument that indicates the index of the
first element of the sub-array, using 0-based indexing. For example, the following loop using MD readsub()
reads from the position array, introduced in the previous section, but here does so in 20-element chunks.

const int32 CHUNK_LEN = 20;
int32 natoms = MD_attrib(eng, pos_id).len;
int32 nchunks = natoms / CHUNK_LEN;
int32 nremainder = natoms % CHUNK_LEN;
int32 first = 0;
int32 k;
MD_Dvec *posbuf;

posbuf = (MD_Dvec *) malloc(natoms * sizeof(MD_Dvec));
for (k = 0; k < nchunks; k++) {
MD_readsub(eng, pos_id, posbuf + first, CHUNK_LEN, first);
MD_wait();
first += CHUNK_LEN;

}
if (nremainder > 0) {
MD_readsub(eng, pos_id, posbuf + first, nremainder, first);
MD_wait();

}

Note that the destination pointer into the front end position buffer must point to the address receiving
the data. The MD writesub() works similarly, except that the pointer is the source from which to copy.
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The MD readsub() has nonblocking semantics, whereas MD writesub() does not. Clearly, this example is
sub-optimal for reading the entire array. The improvement in performance occurs when the front end needs
only a sub-array from an engine data array.

Another way to access a data array is directly through a pointer to its buffer. The MD direct() routine
returns a void * pointer to the engine data buffer (or, in the case of communicating to a remote engine, to
the local copy of the engine data buffer). The array must permit MD DIRECT access in order to acquire this
pointer. An example follows involving reading the position array.

int32 natoms = MD_attrib(eng, pos_id).len;
int32 isdirect = MD_attrib(eng, pos_id).access & MD_DIRECT;
MD_Dvec *posbuf;

if (isdirect) {
posbuf = (MD_Dvec *) MD_direct(eng, pos_id);
MD_wait();

}
else {
posbuf = (MD_Dvec *) malloc(natoms * sizeof(MD_Dvec));
MD_readsub(eng, pos_id, posbuf, natoms, 0);
MD_wait();

}

/*** save positions to a file ***/

if (!isdirect) {
free(posbuf);

}

Using direct access avoids double buffering the position array data, however, a robust front end must fall
back to MD read() if direct access is not permitted. The MD direct() routine has nonblocking semantics
since, for a remote engine, a local copy of the engine array must be made. In the event that the front end
and engine share the same memory space, the call to MD direct() simply returns the array buffer pointer,
so it finishes immediately.

Care must be taken with MD direct() array access. The array pointer is likely to be invalidated if any
memory reallocation is performed on the array. This means that MD direct() should not be called on an
array until after any resizing with MD setlen() and related commands has been performed. Also, the buffer
from MD direct() is not necessarily valid following an MD run() call. If the engine is remote, the buffer
will contain previous array data rather than current data. Also, if the array has MD ESETMAX enabled, it is
possible that the engine performed a memory reallocation on the array during the MD run() call. So the
general rule of thumb for direct array access is to always re-invoke MD direct() on an array following an
MD run() call.

When using a remote engine, the communication for MD direct() is by default one-sided, with the data sent
from the engine to the front end. Direct access support for modifying an engine data array also requires the
use of the companion routine MD setmod().

if (isdirect) {
posbuf = (MD_Dvec *) MD_direct(eng, pos_id);
MD_wait();

}
else {
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/*** use MD_read() ***/
}
posbuf[0].x = 0.0; /* modify position of first atom */
if (isdirect) {
MD_setmod(eng, pos_id); /* tell engine about modification */

}

Calling MD setmod() indicates that the array has been modified by setting the MD MODIFY “dirty bit” status
flag on the array. This status flag signals the engine that the data in its array buffer has changed; for
communication with a remote engine, it also signals the MDAPI layer that the array contents need to be
sent to the engine on the next MD run() call, thus having the array data communicated in both directions.
Note that the MD MODIFY status flag is set automatically by calls to MD write() and MD writesub() and also
by calls to MD share() and MD unshare() discussed next.

Under certain conditions, the front end is permitted to supply the buffer space for an array with MD share().
Doing so is especially good practice for the large data arrays that the front end must initialize from input
files, reducing the memory usage for large systems by close to one-half.

MD_Dvec *posbuf;
int32 len = natoms;
int32 max = natoms;

posbuf = (MD_Dvec *) malloc(max * sizeof(MD_Dvec));

/*** initialize the atom positions ***/

if (MD_attrib(eng, pos_id).access & MD_SHARE) {
MD_share(eng, pos_id, posbuf, len, max);

}
else {
MD_setlen(eng, pos_id, len);
MD_write(eng, pos_id, posbuf, len);

}

/*** run the simulation ***/

MD_done(eng); /* finished with engine object */
free(posbuf); /* must free allocated memory */

As the example shows, the data array must permit MD SHARE access in order to call MD share() successfully.
Array buffer length (len) and maximum allocation (max) are both specified. After calling MD share(), the
engine has control over the contents of the buffer space, and the front end should not directly modify the
contents without first calling MD direct(). The data array attributes are modified by the new len and
max values set for the buffer; also, MD SETMAX and MD ESETMAX are both disabled so that neither the front
end nor the engine is permitted to resize the memory allocation for this buffer. As the example shows, the
front end regains control over the buffer after MD done() and is still responsible for freeing whatever memory
it allocates. Note that MD SHARE access is enabled only if the current array buffer is NULL (i.e. the data
attributes have len = max = 0), and a call to MD setlen() that extends the array buffer (max > 0) will
disable MD SHARE access.

After a successful call to MD share(), the front end is permitted to regain control over the buffer by calling
MD unshare() (i.e. MD share() also enables the MD UNSHARE access flag).
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MD_share(eng, pos_id, posbuf, len, max);

/*** stuff is done ***/

posbuf = (MD_Dvec *) MD_unshare(eng, pos_id);

The call to MD unshare() returns the pointer to the array buffer provided to MD share() and also resets the
data array access attributes back to their previous state before the MD share() call.

Observe that reading from engine data arrays requires communication from the engine, so these types
of routines have nonblocking semantics defined. On the other hand, writing to engine data arrays can be
performed by the front end to local buffer space, so these types of routines do not have nonblocking semantics.
Communication of buffered writes back to the engine is generally delayed until the next MD run() invocation.
The data array modifications can be written back to the engine sooner by calling MD update().

MD_update(eng);
MD_wait(eng);

3.3.2 Establishing callbacks

Callback routines are entry points into the front end that are called by the engine (via the MDAPI layer)
during a running simulation, executed by MD run(). The main idea is for the front end to receive intermediate
results from and possibly to also send data to the engine, all without halting its computation. Judicious use
of callbacks can improve performance substantially. For a remote engine, this permits useful computation
to be performed concurrently with file writing or realtime visualization of results. In the simplest case of
a front end invoking a single-threaded engine within the same process, there is still the advantage of direct
access by the front end to data arrays without double buffering and without the overhead required to stop
and restart the MD run() routine.

Three types of callbacks can be registered with the interface, distinguished by data communication and
processing. Message callbacks receive a text string from the engine providing status of the simulation,
invoked at the discretion of the engine to convey information to the front end. Standard callbacks and force
callbacks are able to receive engine data arrays. Standard callbacks are processed at the completion of a
time step and are intended to checkpoint the simulation, save or visualize trajectories, or monitor energy.
The front end designates for each standard callback the frequency for which it should be invoked, given in
number of steps. Force callbacks are processed during each force computation and are intended for the front
end to provide external forces to the simulation. This enables support for interactive molecular dynamics or
to simply extend the force field beyond the capabilities of a particular engine.

Each type of callback receives in its leading argument void *info intended for front end state information.
A message callback must have the following prototype.

int32 msgcb(void *info, const char *msg, int32 stepnum);

The msg argument receives a string, and stepnum receives the step number counter. The following simple
example shows registering a message callback through MD msgcallback() that prints the status message to
standard output.

int32 print_engmsg(void *info, const char *msg, int32 stepnum) {
const char *engname = (const char *) info;
return printf("%s: step %d: %s\n", engname, stepnum, msg) < 0;
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}

/*** registering message callback ***/

const char *engname;

engname = MD_engine_name(eng);
if (engname == NULL) engname = "engine";
MD_msgcallback(eng, print_engmsg, engname);

The info argument receives a string providing the name of the engine. Note that MD engine name() returns
the engine name string originally provided to MD init(). The example callback routine print engmsg()
prints the message preceded by the engine name and the step number. The return value from a callback
routine is important: success is indicated by zero and failure by nonzero. However, a nonzero return value
will result in stopping the MD run() (or MD test()/MD wait()) call with an error. In the example, an output
error will terminate the simulation.

Multiple callbacks of each type can be registered and are invoked in sequence. It is even possible to register
the same callback routine multiple times. For message callbacks, the callback routines will each be invoked
with the same string message. This feature might be useful for registering one callback that prints to standard
output and a second callback that logs messages to a file. Callbacks may later be un-registered. Continuing
the previous example, the message callback is un-registered by calling MD msgcallback undo() as follows.

MD_msgcallback_undo(eng, print_engmsg);

This will remove each instance of the print engmsg() callback, even multiple registrations of it. Using NULL
in place of the function pointer will undo all callback registrations.

Standard and force callbacks can each receive multiple engine data arrays. The arrays are specified through
the MD Cbdata type. An array of MD Cbdata is passed to the registration routine, in which each element
of the array specifies some sub-array of an engine data array to be received. The front end must typically
initialize the first four members of each MD Cbdata element:

• idnum — the data array identification number

• access — the kind of access requested

• nelems — number of elements in sub-array

• first — index of first element to appear in sub-array

The idnum accepts the values returned by MD idnum(). The nelems and first members are used in almost
the same way as in calls to MD writesub() and MD readsub(). The only difference is that nelems can be set
to −1, meaning “the rest of the elements in the array starting at the index given by first.” This enables
a callback to receive data from an array whose length might have been changed by the engine. The access
member is set to some bitwise ORed combination of access rights, selecting between MD CBREAD, MD CBWRITE,
and MD CBSHARE for standard callbacks or MD FCBREAD, MD FCBWRITE, and MD FCBSHARE for force callbacks.
Read access provides to the callback meaningful data to be used, write access obtains data from the callback,
and the combination of read and write access provides meaningful data to be modified. Share access allows
the callback routine to provide its own data buffer to the engine for copying, allowing the front end to provide
a variable length array to the engine; however, the array semantics are changed in such a way that it is not
possible to combine share access with read and write access. Note that the referenced engine data array
must already permit the type of access being requested.



36 CHAPTER 3. GUIDE TO USING FRONT END INTERFACE

The callback routine will receive the same MD Cbdata array as used when registering it, so the MD Cbdata
arrays allocated by the front end must persist during the simulation. Two additional members within each
MD Cbdata element are made available to the callback routine:

• data — points to the data

• attrib — the attributes of this engine data array

The attrib member is of type MD Attrib, providing the attributes. In particular, attrib.len contains
the length of the array, useful if nelems was unknown with value −1, and attrib.type contains the type
number, useful to distinguish between single precision MD Fvec and double precision MD Dvec. The data
pointer is of type void * so must be typecast to the correct data type. If the front end and engine are in the
same memory address space, then data will simply be a pointer directly into the engine data array. In the
case of a remote engine, data will point to a buffer large enough to contain the requested sub-array elements.
Note that data should be indexed starting from 0 through nelems− 1 (or through attrib.len− first− 1
if nelems = −1).

Access rights MD CBSHARE and MD FCBSHARE change the semantics. In this case, data = NULL and nelems =
first = 0 is received in that MD Cbdata element by the callback routine. It is up to the callback to
provide a data buffer to the engine. The sub-array semantics still apply, with updates to nelems and first
describing what portion of the engine data array is being provided and possibly resizing it. The front end
retains ownership of the memory it sends via the data pointer, with copy semantics like MD write(), which
means that the same memory buffer can be reused on subsequent callbacks, and the front end is eventually
responsible for freeing the memory allocation for this buffer. Although share access cannot be combined with
read or write access, it is possible to reference the same array using two different MD Cbdata elements. For
instance, assuming that an engine data array permitted both read and share access to standard callbacks, the
first MD Cbdata element could set MD CBREAD access to receive the previous values and the second MD Cbdata
element could set MD CBSHARE access to provide a data buffer back to the engine with updated values. Note
that data array resize changes are only permitted if the front end has already been granted access to do so,
and will otherwise result in an error.

The first of two examples that follow establishes a standard callback that receives the position coordinates
and saves them for later analysis. This is the more efficient version of the run-loop presented at the end of
Sec. 3.2.

/* the callback */
int32 save_pos(void *info, MD_Cbdata *cbd, int32 cbdlen, int32 stepnum) {
FILE *trajfile = (FILE *) info;
MD_Dvec *pos = cbd[0].data;
int32 natoms = cbd[0].attrib.len;

/*** write pos array into trajfile ***/

return 0; /* if successful */
}

/* main code section */
int32 totalsteps = 800000;
int32 incrstep = 50;
int32 pos_id = MD_idnum(eng, "pos");
#define CBDLEN 1
MD_Cbdata cbd[CBDLEN];
FILE *trajfile; /* points to trajectory file */
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cbd[0].idnum = pos_id;
cbd[0].access = MD_CBREAD;
cbd[0].nelems = -1;
cbd[0].first = 0;

/*** open trajfile ***/

MD_callback(eng, save_pos, trajfile, cbd, CBDLEN, incrstep);
MD_run(eng, totalsteps, 0);
MD_wait(eng);

/*** close trajfile ***/

The save pos() function shows the prototype of a standard callback, accepting the info argument as
discussed previously, followed by the MD Cbdata array, its length, and the current value of the step number
counter. The call to MD callback() to register save pos() as a standard callback is sent as arguments the
function pointer save pos, the value of the “info” pointer, the MD Cbdata array, its length, and the step
counter increment. In this case, save pos() will be invoked during the simulation every 50 time steps and
receive the position array along with the trajectory file handle. Using the default first step number 0 to be
assigned to the initial position coordinates, the call to MD run() will result in saving the trajectories after
50, 100, 150, . . . , 800, 000 steps. Changing the MD run() call to

MD_run(eng, totalsteps, MD_CBFIRST);

will also save the initial trajectories at step 0. The MD CBFIRST flag will make sure to process the standard
callbacks at the initial step number value. Standard callbacks can each be registered using a different
step increment. This means that registering a second callback with a step increment of 75 will result
in the second routine being called after 75, 150, 225, . . . , 799, 950 steps, with both called at step numbers
150, 300, . . . , 799, 950. Standard callbacks can be un-registered by calling MD callback undo() as was done
for message callbacks.

The second example establishes a force callback to provide the system with external forces. Suppose that
this callback routine applies a spring-type force to a single atom to bring it to a fixed location. This routine
would need the position of the atom and would compute an additional force on that atom.

/* create a new type using related predefined data types */
typedef Spring_tag {
MD_Bond bond; /* special spring bond parameters */
MD_Dvec r; /* anchored end of spring */
double dt; /* time step */

} Spring;

/* the force callback */
int32 apply_force(void *info, MD_Cbdata *cbd, int32 cbdlen, int32 stepnum,

double frac) {
Spring *spr = (Spring *) info;
MD_Dvec *pos = (MD_Dvec *) cbd[0].data;
MD_Dvec *force = (MD_Dvec *) cbd[1].data;
double time = (stepnum + frac) * spr->dt; /* ellapsed simulation time */

/*** compute interaction between spr[0].r and pos[0] ***/
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/*** store result in force[0] ***/

return 0;
}

/* main code section */
int32 pos_id = MD_idnum(eng, "pos");
int32 extforce_id = MD_idnum(eng, "extforce");
int32 atomindex = 42; /* index of atom connected to special spring */
int32 natoms = MD_attrib(eng, pos_id).len;
#define FCBDLEN 2
MD_Cbdata fcbd[FCBDLEN];
Spring spr;
MD_Dvec *extforce;

/* allocate (and zero) external force buffer */
extforce = (MD_Dvec *) calloc(natoms, sizeof(MD_Dvec));
MD_share(eng, extforce_id, extforce, natoms, natoms);

/* setup force callback MD_Cbdata array */
fcbd[0].idnum = pos_id;
fcbd[0].access = MD_FCBREAD;
fcbd[0].nelems = 1;
fcbd[0].first = atomindex;
fcbd[1].idnum = extforce_id;
fcbd[1].access = MD_FCBWRITE;
fcbd[1].nelems = 1;
fcbd[1].first = atomindex;

/*** initialize spr ***/

MD_fcallback(eng, apply_force, &spr, fcbd, FCBDLEN);
MD_run(eng, totalsteps, 0);
MD_wait(eng);

The use of force callbacks is almost the same as that of standard callbacks. The MD fcallback() routine does
not need take a step number increment because force callbacks are invoked every time the force is evaluated.
Observe that the MD Cbdata array sent to apply force() provides no more data than is necessary, rather
than sending the entire position and external force arrays. The one additional argument received by the force
callback routine is frac, which is defined as the fractional amount to be added to the step number counter so
that multiplying by the time step gives the simulation time of the position approximation. Assuming that the
initial position configuration is assigned step number 0, then the value of time computed in apply force()
is the ellapsed simulation time, as indicated. This is necessary if the computed force is time-dependent. Note
that the value of frac depends on the integration method used. For leapfrog/Verlet integration, frac = 1.0.
An integration method that requires multiple force evaluations per time step might require a different value
for frac for each force evaluation. The MD fcallback undo() routine can be used to un-register force
callbacks.
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3.3.3 Using engine-defined types

Engine data arrays may be of any predefined data type, as presented in Sec. 2.2. The engine is also able to
extend the interface by defining new data types. The routines discussed here enable the front end to use an
unknown new data type.

Data types have string names in the same way that engine data arrays do. The full list of data type names
is available through the MD type namelist() routine.

const char **typename;
int32 len;

typename = MD_type_namelist(eng, &len);

This routine returns the type name list as an array of strings, with its length returned to the variable len.
The type name of a predefined type is simply the string of its hard-coded type name, for example, predefined
data type double has type name "double" and MD BondPrm has type name "MD BondPrm".

Working with data types is made easier by also associating a type number with each name. Type numbers
have already been encountered, for example, the type member of MD Attrib. Given the type name, the type
number is available using the MD type() routine.

int32 bondprm_type;

bondprm_type = MD_type(eng, "MD_BondPrm");

Note that type names are case sensitive. There is also a function that maps the other direction from type
numbers to type names. To continue the previous code example, the following will print MD BondPrm to
standard output.

printf("%s\n", MD_type_name(eng, bondprm_type));

Besides providing an easily used identification scheme, type numbers also encode the byte size of an instance
of the type.

printf("%s has size %d bytes\n",
MD_type_name(eng, bondprm_type), MD_SIZEOF(bondprm_type));

The MD SIZEOF() macro maps the type number to the size in bytes, similar to the C sizeof operator. In
many situations, such as when performing memory management, knowing the size allows data types to be
parameterized.

A defined data type can be viewed, much like a C struct, as an agglomeration of members of previously
defined data types. The fundamental types that are not based on smaller data types are known as primary
types. All other data types are known as derived types. The MD Member type provides information regarding
a single member of a data type. MD Member contains the following members.

• type — the type number of the member

• len — the number of elements of this member
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• name — the string name of this member

The len value allows the data type member to be defined as a (static) one-dimensional array. The name
string is the name of the member, not the type. Since the type has some collection of members, it is described
by an array of MD Member. As an example, the primary type double has a one-element MD Member array.

{ { MD_DOUBLE, 1, "" } }

Note that any primary type has a one-element MD Member array, with name given by "" (the empty string)
since it is a “smallest” type that conceptually has no members. For another example, the derived type
MD BondPrm has a three-element MD Member array,

{ { MD_DOUBLE, 1, "k" }, { MD_DOUBLE, 1, "r0" }, { MD_NAME, 2, "type" } }

that describes the following type definition.

typedef struct MD_BondPrm_tag {
double k;
double r0;
MD_Name type[2];

} MD_BondPrm;

Note that types, such as MD Name, MD Fvec, and MD Dvec, are treated as primary types. Also note that
interface types, such as MD Attrib and MD Member, are not data types.

The MD Member array for a defined data type is returned by the routine MD type memberlist().

const MD_Member *mlist;
int32 mlistlen;

mlist = MD_type_memberlist(eng, bondprm_type, &mlistlen);

This allows the front end to “comprehend” an unknown data type by discovering its components. Another
routine MD type member() enables the front end to access an individual member of a data type by name,
given an object of that type.

MD_BondPrm bondprm;
double *r0;
MD_Member m;

/*** assume that bondprm has been initialized ***/

r0 = (double *) MD_type_member(eng, bondprm_type, &bondprm, "r0", &m);
printf("equilibrium length is %g\n", *r0);

The return value of MD type member() is void * so must be typecast. The arguments to MD type member()
are the type number, a pointer to the object, the name of the member, and a pointer to a variable of type
MD Member. In this example, the variable m will return from the call with the following value.

{ MD_DOUBLE, 1, "r0" }
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Two data types that engines are encouraged to offer are Param and Result. The Param data type is a
collection of simulation parameters, including the time step, the dielectic constant, and the cutoff. The
Result data type is a collection of computed quantities from the simulation, such as kinetic and potential
energy and temperature. Note that Param and Result both gather together small data types (mostly
double or float). This is an especially good idea for Result, since these values will probably be received
by a frequently invoked callback.

The following example shows a callback that outputs the step number and total energy after every five steps.
It can easily be expanded to do greater things.

/* info type for energy callback */
typedef EnergyInfo_tag {
FILE *f;
int offset;

} EnergyInfo;

/* callback to save energy values */
int32 save_energy(void *info, MD_Cbdata *cbd, int32 cbdlen, int32 stepnum) {
Energy *enfo = (Energy *) info;
double *energy = (double *) ((char *) cbd[0].data + enfo->offset);

fprintf(enfo->f, "%d %g\n", stepnum, *energy);
return 0;

}

/* main code section */
MD_Cbdata cbd[1];
EnergyInfo enfo;
int32 result_type = MD_type(eng, "Result");

cbd[0].idnum = MD_idnum(eng, "result");
cbd[0].access = MD_CBREAD;
cbd[0].nelems = 1;
cbd[0].first = 0;

enfo.offset = (char *) MD_type_member(eng, result_type, NULL, "energy", NULL)
- (char *) NULL;

/*** open energy file, store handle in enfo.f ***/

MD_callback(eng, save_energy, &enfo, cbd, 1, 5);
MD_run(eng, totalsteps, MD_CBFIRST);
MD_wait(eng);

/*** close energy file ***/

The expectation here is that the engine provides a single-element data array result of unknown data type
Result, containing a member energy of type double. The sly part is the use of MD type member() to
compute an offset in bytes from the front of the result object to the energy member. Knowing this offset
is necessary since there is no guarantee that the callback receives an identical data pointer as, say, a call
to MD direct() in the main code section. The MD type member() call sets the object instance to NULL to
compute the address of energy starting from 0, then subtracts NULL (with both typecast to char *) in
order to obtain the int difference in bytes. Although MD type member() could have been called within
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save energy() to obtain the pointer offset from a legitimate instance of type Result, that approach is
significantly slower than simply adding an offset. An alternative approach to saving these results is to write
the entire Result object to a binary file that can later be parsed. Since different engines are likely to have
differences in their type definitions of Result, care must be taken to preserve the member names, offsets,
and object byte size.



Chapter 4

Guide to Using Engine Interface

The engine is primarily responsible for computing a molecular dynamics simulation. To accomplish this,
the engine must enable a front end to setup and obtain results from the simulation by providing access
to data arrays. The engine interface is available by including the mdengine.h header file into the engine
source code and linking to the MDAPI library. The details for building and linking to the current MDAPI
implementation are presented in Sec. 1.3.

This chapter provides guidelines for using the engine interface. The interface is object oriented, with calls
operating on a front end object. The engine has three entry points from the MDAPI layer:

1. initialization routine (called through MD init()),

2. run routine (called through MD run()),

3. cleanup routine (called through MD done()).

Each of these three engine parts has particular engine interface routines associated with it. The sections
that follow discuss each part, providing code examples that demonstrate the recommended order of engine
interface calls and their use. This chapter should be read with Chap. 6 used for reference, especially Secs. 6.1
and 6.3.

4.1 Initialization

The engine initialization routine called through MD init() has the following prototype.

int32 engine init(MD Front *frnt, int32 flags);

The name engine init is used here as a placeholder; the actual name of this function is either specified by the
front end (passed as a function pointer to MD init()) or determined by the MDAPI implementation support
for dynamic loading of an engine module. The received frnt argument points to the front end object. The
interface places no meaning on the flags, so its value is entirely engine-dependent.

The initialization mostly involves setting up the engine internal data, establishing the engine data arrays,
and specifying the run routine. These tasks are done once for each engine object, so engine init can be
viewed as the constructor for the engine. The return value from engine init should be either 0 for success

43



44 CHAPTER 4. GUIDE TO USING ENGINE INTERFACE

or MD FAIL for failure. Any MDAPI calls made during initialization may be considered fatal, so MD FAIL
should immediately be returned. The cleanup routine will still be called through MD done(), so the freeing
of memory allocations can be delayed until then.

4.1.1 Setting up internal data

The engine requires maintaining internal data. This is best done by allocating a main engine data object on
the heap, so as to make the engine thread-safe. For the remainder of the chapter, assume that there is an
Engine type defined as follows.

typedef struct Engine_tag {
/* internals to be announced */

} Engine;

Note that Engine might itself contain other data objects in order to separate the computational aspects of
molecular dynamics. The first task of engine init might be to allocate this engine object.

Engine *e;

e = (Engine *) calloc(1, sizeof(Engine));

It is probably best to use calloc() since this will automatically zero the contents of the Engine object.

The handle to the Engine object must somehow be retrieved later by the engine at its other entry routines.
Storing the pointer for later retrieval is accomplished by calling MD setup engine() as follows.

if (MD_setup_engine(frnt, e)) return MD_FAIL;

The other engine entry routines will call MD engine data() to obtain the Engine object pointer. It is
important to check the return value of MD setup engine() because it also checks that the engine is using
the same version of the MDAPI as the front end. For this reason, MD setup engine() should be the first
engine interface routine called.

The alternative to dynamic memory allocation is to keep global variables. Not only is this not thread-safe
(unless some sort of locking is done), but it also makes it more difficult to support simultaneous simulations.
One solution is to keep a variable indicating whether the engine is in use. The code might be something like
the following.

/******* NOT ADVISED *******/

int is_active = 0;

int32 engine_init(MD_Front *frnt, int32 flags) {
extern is_active;

if (is_active) return MD_FAIL; /* engine is already in use */
else is_active = 1;

/*** other initialization stuff ***/
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return 0;
}

/******* NOT ADVISED *******/

The is active variable can later be cleared at the end of the engine cleanup routine. However, since the
MDAPI interface permits multiple calls to MD init() to be “in flight” at the same time on different interface
objects, this approach might still fail unless some mutual exclusion mechanism is used to control access to
is active.

4.1.2 Establishing engine data arrays

The engine data arrays provide the communication mechanism for the front end to setup the simulation
and obtain results. Particular engine data arrays should be provided to ensure basic interoperability with
different front ends. See Chap. 5 for a list. An engine data array has assigned to it an unique string name
that the front end uses to identify the array. The elements of an engine data array must be of some defined
data type. There are a number of predefined data types, presented in Sec. 2.2, and the engine can define
new data types, as discussed in Sec. 4.1.4.

Each engine data array is stored using a MD Engdata object. These objects are allocated by the MDAPI
layer, referenced by the engine using pointers. There are three different ways to create MD Engdata objects
depending on the desired memory management strategy for the buffer. The choices are:

• MD engdata() — the MDAPI layer manages the data buffer memory,

• MD engdata buffer() — a fixed buffer is assigned that cannot be resized,

• MD engdata manage() — the memory management method is specified.

The MD engdata() routine is best used for data arrays that depend on the size of the system, as determined
by the input files read by the front end. The following code shows the creation of the position array.

Engine *e; /* has member: MD_Engdata *pos */

e->pos = MD_engdata(frnt, "pos", MD_DVEC, MD_READ | MD_WRITE | MD_RESIZE);
/* might also add MD_CBREAD and MD_FCBREAD access to support callbacks */

The MD engdata() returns a pointer to the newly created MD Engdata object or NULL if an error occurs. The
arguments provided are the name of the engine data array, its data type, and the access permissions. The
name string, for all routines in this section, must persist until the cleanup routine, making the use of a string
literal a good choice. The buffer starts out having zero length, and it is left to the front end to resize the
buffer.

The MD engdata buffer() routine is best used for data arrays that have a fixed size. This includes “scalar”
values such as simulation parameters. The time step is such an example.

Engine *e; /* has members: MD_Engdata *timestep, double dt */
MD_Attrib timestep_attr = { MD_DOUBLE, 1, 1, MD_READ | MD_WRITE };

e->timestep = MD_engdata_buffer(frnt, "timestep", timestep_attr, &(e->dt));
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For this routine, it is necessary to provide the full set of attributes. The order of attributes is the type,
the length, the maximum allocation, and the access permissions. The arguments provided are the name of
the engine data array, the data array attributes, and a pointer to the buffer, which in this case is just the
address of the variable e->dt that will hold the time step.

Another example involving MD engdata buffer() might be if it is desirable to either pre-allocate or maintain
a static array for, say, the position array.

Engine *e; /* has members: MD_Engdata *pos, MD_Dvec posbuf[10000] */
MD_Attrib pos_attr = { MD_DVEC, 0, 10000, MD_READ | MD_WRITE | MD_SETLEN };

e->pos = MD_engdata_buffer(frnt, "pos", pos_attr, e->posbuf);

In this case, the engine allows a system no larger than 10,000 atoms to be simulated. Note that the length
attribute is set to 0 since no positions have yet been initialized, whereas the maximum allocation of 10,000
is indicated. The MD SETLEN flag allows the front end to set the length of the position array up to the
10,000 atom limit. Although this particular instance is contrived, this approach could be used to wrapper a
Fortran-based engine.

A more practical example using a fixed buffer space is accepting a string engine parameter that has certain
predetermined values. For example, NAMD accepts a string parameter in its simulation configuration file
for the "exclude" keyword, whose value describes the nonbonded exclusion policy, one of "none", "1-2",
"1-3", "1-4", or "scaled1-4". The following code fragment shows a partial definition of the Engine data
structure and the engine init() source used to handle this case.

typedef struct Engine_tag {
MD_Engdata *eng_exclude;

char exclude[12];
} Engine;

int32 engine_init(MD_Front *frnt, int32 flags) {
Engine *e;
MD_Attrib attr = { MD_CHAR, 0, 12, MD_READ | MD_WRITE | MD_SETLEN };

strcpy(e->exclude, "none");
attr.len = 5; /* strlen("none") + nil-terminator */
e->eng_exclude = MD_engdata_buffer(frnt, "exclude", attr, e->exclude);

return 0;
}

Note that the default value of "none" is provided to the "exclude" array, with the length set to count the
string nil-terminator. (The front end should comply with this policy of writing strings to the engine that
are nil-terminated.) Here the value 12 was chosen for the char buffer length for the sake of 4-byte (32-bit)
word alignment.

The MD engdata manage() routine is used in the (rare) event that the engine needs to manage its own
memory. The position array is again used for the following example.

Engine *e; /* has member: MD_Engdata *pos */
MD_Attrib pos_attr = { MD_DVEC, 0, 0, MD_READ | MD_WRITE | MD_RESIZE };
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e->pos = MD_engdata_manage(frnt, "pos", pos_attr, NULL, realloc);

The arguments are the name of the engine data array, the data array attributes, the pointer to the buffer,
and the memory management routine. Note that the length and maximum allocation attributes are both
set to 0, since there is no buffer space initially allocated, and the buffer pointer is set to NULL. The memory
management routine must have the same prototype and semantics as the C library realloc() function (and
the example simply uses realloc for the function pointer).

void *realloc(void *ptr, size_t size);

The realloc() function changes the size of the memory block pointed to by ptr to size bytes, with the
contents at ptr moved to the new memory block up to the new size. The return value is a pointer to the new
block of memory or NULL if an error occurs. The function must behave like malloc() when ptr is NULL and
like free() when size is 0, but keep in mind that the return value from realloc(ptr, 0) is not necessarily
NULL.

Establishing an engine data array associates a string name with the array. Alternative names can also be
provided to reference a particular array. The following example demonstrates setting the additional name
"position" for the position array.

MD_engdata_alias(frnt, "position", e->pos);

Note that the engine data array must have already been established using one of the three previous routines.
Providing an alternative name might be useful in the case of, say, maintaining compatibility with NAMD
simulation parameters.

4.1.3 Specifying the run routine

Engine initialization also requires specifying the run routine. Assuming that the run routine is named
engine run(), the following example shows that this is accomplished by passing the address of the function.

MD_setup_run(frnt, engine_run);

Guidelines for the engine run() routine along with its responsibilities are presented in Sec. 4.2.

4.1.4 Defining new data types

The engine has the option of defining new data types that can be used when establishing data arrays. A
defined data type is a C struct whose members are of previously defined types. There is a constraint that
4-byte numeric types (int32, float, MD Fvec) be aligned at 4-byte boundaries and 8-byte numeric types
(double, MD Dvec) be aligned at 8-byte boundaries. Also, the entire size of the type must be divisible by 8
if it contains some 8-byte numeric type or be divisble by 4 if it contains some 4-byte numeric type.

A defined data type is described by an array of elements of type MD Member, in which each element defines
a member of the data type. The MD Member itself contains the following members.

• type — the type number of the member
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• len — the number of elements of this member

• name — the string name of this member

The name string is the name of the member. The len value allows the data type member to be defined as
a (static) one-dimensional array. The type denotes the type of the member, using its type number, which
itself was the return value from a previous call to the MD new type() routine. Note that this definition is
recursive: the base cases are the primary types (such as int32, double, MD Dvec, MD Name) that are not
considered to be based on previous types; the derived types are based on previously defined types (such as
MD Atom, MD BondPrm). See Sec. 2.2 for more information regarding the predefined data types.

The MD Member array description of a primary type is always an one-element array in which the name string
is the empty string (""). For example, the primary type double has the following MD Member array.

{ { MD_DOUBLE, 1, "" } }

A derived type may be viewed as a C struct in which each named member is of a previously defined type.
For example, the derived type MD BondPrm has a three-element MD Member array,

{ { MD_DOUBLE, 1, "k" }, { MD_DOUBLE, 1, "r0" }, { MD_NAME, 2, "type" } }

that describes the following type definition.

typedef struct MD_BondPrm_tag {
double k;
double r0;
MD_Name type[2];

} MD_BondPrm;

New types are defined by calling the MD new type() routine. The easiest way to present its use is through
an example. Suppose that the engine wishes to support polarizable force fields. This would be most readily
done by creating a new type comprised of a MD Atom member along with a MD Dvec member that provides
the polarizability constant for the atom.

#define NELEMS(a) (sizeof(a) / sizeof(a[0]))

typedef struct PolarAtom_tag {
MD_Atom atom;
MD_Dvec d;

} PolarAtom;

static const MD_Member PolarAtomMembers[] = {
{ MD_ATOM, 1, "atom" }, { MD_DVEC, 1, "d" }

};

/*** within initialization routine ***/
eng->polar_atom_typenum = MD_new_type(frnt, "PolarAtom", PolarAtomMembers,

NELEMS(PolarAtomMembers), sizeof(PolarAtom));

The arguments are the name of the type, the MD Member array, the length of the MD Member array, and
the size of the type in bytes. The return value is the type number (int32) for the newly defined type, or
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MD FAIL if the call is unsuccessful. Both the name string and the MD Member array must persist until the
cleanup routine, so making the name string a constant literal and declaring the MD Member array as static
const is recommended. The NELEMS() macro is a popular C idiom that provides the length of a statically
defined array. Note that maintenance of this code requires only that the PolarAtom type definition and the
PolarAtomMembers array are kept consistent. Also, since the MD Atom type contains double members, the
definition of PolarAtom satisfies the byte alignment and size constraints.

There are two types (and data arrays) that the engine is recommended to define. The Param type contains
simulation parameters, such as the time step, cutoff distance, and nonbonded exclusion policy. The Result
type contains computed quantities, such as potential energy, kinetic energy, and temperature. These types
would each be used to define single-element data arrays named param and result, respectively. See Chap. 5
for further guidelines.

The advantage to clustering engine simulation parameters into a Param type referenced through a single-
element "param" engine data array is to provide the engine with an improved means of handling front end
modifications to the simulation parameters. Notification of front end modification of engine data arrays is
passed in the flags to the engine run routine if those engine data arrays have been established with MD NOTIFY
the access bit. As an example, the engine might contain the following code.

typedef struct Param_tag {
double timestep;
double cutoff;
char exclude[16];

} Param;

static const MD_Member paramMemberList[] = {
{ MD_DOUBLE, 1, "timestep" },
{ MD_DOUBLE, 1, "cutoff" },
{ MD_CHAR, 16, "exclude" }

};

static const Param defaultParam = {
/* timestep = */ 1.0,
/* cutoff = */ 0.0,
/* exclude = */ "none"

};

typedef struct Engine_tag {
MD_Engdata *eng_param;

Param param;
} Engine;

int32 engine_init(MD_Front *frnt, int32 flags) {
Engine *e;
MD_Attrib param_attr = { 0, 1, 1, MD_READ | MD_WRITE | MD_NOTIFY };

param_attr.type = MD_new_type(frnt, "Param", paramMemberList,
NELEMS(paramMemberList), sizeof(Param));

e->param = defaultParam;
e->eng_param = MD_engdata_buffer(frnt, "param", param_attr, &(e->param));

return 0;
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}

Now when the front end writes to "param", the engine will be notified through its run routine flags, which
will be discussed in detail in Sec. 4.2.2. Any changes to cutoff or exclude would likely require significant
updates to engine force evaluation data structures. Note that MD READ access is also granted to permit
the front end to see the default simulation parameter settings. Notice also that the Param type number is
absorbed into the engine data array, available to the engine (if needed) as:

e->eng_param->attrib.type

so it does not need to be stored separately in Engine.

The advantage to clustering engine simulation results into a Result type referenced through a single-element
"result" engine data array is to provide the front end with a single addressable quantity to obtain all of
the simulation reductions. The engine should probably set the "result" access permissions to (MD READ |
MD CBREAD) to allow the front end to receive the reductions to some callback function. Note that MD WRITE
should not be set since the front end will not be determining any of these data itself, and the MD NOTIFY is
useless since the front end cannot modify the data. The general rule of thumb is to include into Result any
(primarily scalar) reductions that change after each simulation time step. Quantities that are determined
once at the beginning of a simulation, such as the number of degrees of freedom of the system, are not good
candidates for Result.

4.1.5 Defining new error conditions

The engine is also permitted to define new error conditions that can be raised during the simulation. The
MD new error() routine is demonstrated in the following example.

e->too_hot = MD_new_error(frnt, "system temperature too hot", 0);
e->unstable = MD_new_error(frnt, "simulation is unstable", 1);

The return value is the new error number (int32), or MD FAIL if the call is unsuccessful. The arguments to
MD new error() are the message string, whose value must persist until the cleanup routine, and an int32
value, in which zero indicates that the error is recoverable and nonzero indicates that the error is fatal.

4.2 Running the Simulation

The engine run routine is called by the MDAPI layer through its MD run() routine and must have the
following prototype.

int32 engine run(MD Front *frnt, int32 numsteps, int32 flags);

The name engine run is used here as a placeholder; the actual name of this function is specified by the
engine to the interface during the engine initialization routine, where the engine passes a function pointer
to the run routine in its call to MD setup run(), so the run routine does not need external linkage. The
arguments are frnt which points to the front end object, numsteps which indicates the number of time
steps to advance the system, and flags which provides information on engine data array modification by
the front end. Note also that the 16 low-order bits of flags are reserved to the engine, allowing the front
end to set engine-dependent flags.
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This routine is the entry point into the engine for the actual simulation computation. The numsteps argument
should be nonnegative, where the value 0 indicates that the forces and reductions should be brought up-
to-date if not already. The engine is responsible for the maintenance of its state with respect to the front
end provided data, so it should initially check for modifications of the engine data arrays or for the need to
initialize (or reinitialize) its internal data structures. After this it performs the integration of the system for
the indicated number of steps. There are some required MDAPI calls to coordinate the engine computation
with the front end expectations, however, the interface has been designed with the intention of providing
maximum flexibility with minimum interference to the computational work that must be performed. The
following sections provide details about the interface offered to the run routine, followed by a larger code
example that brings the details together into a more complete illustration of the entire routine.

4.2.1 Accessing the engine data

One of the first things necessary is to obtain the engine internal data from the interface. Using names from
the previous examples, the pointer to Engine is obtained as follows.

Engine *e = (Engine *) MD_engine_data(frnt);

4.2.2 Dealing with modified data arrays

The engine, before integrating the system, will likely need to perform some additional initialization based on
the data provided by the front end. This initialization might include setting up appropriate data structures
to efficiently handle force evaluation as well as sanity checks on the data.

Since the run routine might be repeatedly called by the front end, it is important for the engine to determine
whether or not any initialization must take place. A simple check on the flags argument to the run routine
can be used. The flags argument will have the MD UPDATE status bit set if any engine data arrays with
MD NOTIFY access enabled have been modified by the front end. Modification includes changes to the data
or buffer length. Any modified engine data array will have the MD MODIFY status bit set on its individual
access flags, regardless of whether or not the MD NOTIFY flag was enabled for that array.

So which engine data arrays should be established with the MD NOTIFY flag? The answer is, any whose
modification might affect integrating the system before some initialization is performed, which includes
almost all engine data arrays. For example, it is probably sufficient to check for consistent sizes between
the "atom", "pos", and "vel" arrays. An additional test on the "atom" array might be needed to ensure
that all mass values are positive. The value of "cutoff" (which might be a member of the engine-defined
"Param" type) will affect setup of the geometric hashing done for efficient evaluation of cutoff nonbonded
forces. The mixed blessing and curse of keeping simulation parameters gathered in a "Param" type is that,
although a single test against the MD MODIFY status flag will reveal changes to the set, it will not be obvious
which individual members have been changed. One guideline might be to maintain simulation parameters
that affect the force evaluation (such as "cutoff" or "exclude") within the "Param" type; the initialization
of the force evaluation data structures tends to be costly. Simulation parameters that do not affect force
evaluation (such as "timestep") might be best kept outside of "Param".

Whenever the engine has performed initialization (or reinitialization) regarding a modified engine data array
that was established with the MD NOTIFY flag, the engine should then call MD engdata ackmod() on the array
to acknowledge that it dealt with its modification. This will clear the MD MODIFY status flag on that array.
Note that the only way for the engine to clear the MD UPDATE global status flag is to acknowledge data array
modifications for any data array established with the MD NOTIFY flag that has its MD MODIFY status set.

The following code demonstrates how the engine may deal with modified data arrays.
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int32 engine_run(MD_Front *frnt, int32 numsteps, int32 flags) {
Engine *e = MD_engine_data(frnt);
Param *param = &(e->param); /* point directly to param data */

if (flags & MD_UPDATE) {
/* must check flags of individual data arrays */
if (e->pos->attrib.access & MD_MODIFY) {
/* position array was modified - deal with it */
/* access position array through (MD_Dvec *)(e->pos->buf) */
MD_engdata_ackmod(frnt, e->pos);

}
if (e->eng_param->attrib.access & MD_MODIFY) {
/* param was modified - deal with it */
/* access param through "param" pointer, e.g. param->cutoff */
MD_engdata_ackmod(frnt, e->eng_param);

}
/* etc. */

}

/* perform integration for "numsteps" */

return 0;
}

Since the update procedure might be somewhat long and involved, depending on the complexity of the
engine, it might be best performed in a separate routine.

4.2.3 Incrementing the step number counter

The interface layer keeps track of integration the step numbering. The front end is allowed to initialize the
step number counter. The engine does not need to be concerned with this labeling of step numbers, rather
its job is to integrate the system for numsteps, the number of steps specified to the run routine. However,
the engine is still required to increment the step number counter after each integration step by performing:

MD_incrstep(frnt);

If the engine wishes to also know the value of the step number counter, this value is returned by calling:

int32 step = MD_stepnum(frnt);

4.2.4 Reporting and handling errors

In order for an engine to be robust, it must properly identify and handle error conditions. Almost all of the
MDAPI engine routines discussed so far will return an error indicator if the call does not succeed. Generally
speaking, the routines whose return value is a pointer will indicate failure with NULL, and the routines whose
return value is an integer will indicate failure with MD FAIL (−1). The return values from MDAPI routines
should be monitored and handled correctly.

As stated previously, errors that occur during engine init() should be treated as fatal, so MD FAIL may
be immediately returned. Although some exceptional conditions might be recoverable by the engine during
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engine run(), many errors cannot be handled by the engine itself and instead should be reported back to
the MDAPI layer. The MD error() routine is used to report errors, where a particular error is identified
by its number. The error number is stored by the MDAPI layer and made available to the front end for
attempted error recovery, much like the system library maintains errno. There are several error numbers
defined by the MDAPI itself, for instance MD ERR MEMALLOC to denote that memory allocation failed. The
engine can also define its own error number values by calling MD new error() as discussed previously. The
MD error() routine accepts an error number and sets the error number maintained by the MDAPI layer to
this value. Also, the return value from MD error() is MD FAIL, so its call can be used as the unsuccessful
return from an engine routine. The following partial source example illustrates.

int32 engine_init(MD_Front *frnt, int32 flags) {
MD_Attrib timestep_attr = { MD_DOUBLE, 1, 1, MD_READ | MD_WRITE };
int32 accrwz = MD_READ | MD_WRITE | MD_RESIZE | MD_NOTIFY;

Engine *e = (Engine *) calloc(1, sizeof(Engine));
if (e == NULL) return MD_error(frnt, MD_ERR_MEMALLOC);

/* system library call failed, set error number */

if (MD_setup_engine(frnt, e)) return MD_FAIL;
/* error number set by failed MD_setup_engine() routine */

e->atom = MD_engdata(frnt, "atom", MD_ATOM, accrwz);
if (e->atom == NULL) return MD_FAIL;

/* error number set by failed MD_engdata() routine */

e->timestep = MD_engdata_buffer(frnt, "timestep", timestep_attr, &(e->dt));
if (e->timestep == NULL) return MD_FAIL;

/* error number set by failed MD_engdata_buffer() routine */
e->dt = 1.0; /* set default timestep value */

e->unstable = MD_new_error(frnt, "simulation is unstable", 1);
if (e->unstable == MD_FAIL) return MD_FAIL;

/* error number set by failed MD_new_error() routine */

e->badparam = MD_new_error(frnt, "invalid parameter value", 0);
if (e->badparam == MD_FAIL) return MD_FAIL;

/* error number set by failed MD_new_error() routine */

/* etc. */

return 0;
}

int32 engine_run(MD_Front *frnt, int32 numsteps, int32 flags) {
Engine *e = MD_engine_data(frnt);
MD_Atom *atom = (MD_Atom *)(e->atom->buf);
int32 natoms = e->atom->attrib.len;

if (flags & MD_UPDATE) {
if (natoms == 0) return MD_error(frnt, e->badparam);
if (e->dt <= 0) return MD_error(frnt, e->badparam);

/* tell front end that some param is invalid */
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/* etc. */

}

/* perform simulation */

if (simulation_is_unstable) return MD_error(frnt, e->unstable);

/* etc. */

return 0;
}

If an error is returned, the front end is able to obtain the error number and message description string. The
fact that e->unstable error above was defined with the isfatal argument set to 1 makes this error fatal; if
this error occurs, the front end has no alternative but to destroy the engine object. The MD ERR MEMALLOC is
another example of an unrecoverable error. The e->badparam error was defined with the isfatal argument
set to 0, meaning that the front end can possibly recover from this error (after supplying valid engine data
values, which might depend on some interaction with the user to supply appropriate data files or simulation
parameter values).

4.2.5 Processing callbacks

Callbacks come in three flavors: standard callbacks, force callbacks, and message callbacks. Standard call-
backs are the most common type of callback, allowing the front end to access certain data arrays at regular
intervals in between time steps. Force callbacks are processed every time that the force is evaluated, intend-
ing for the front end to supply additional force values to the engine. Message callbacks permit the engine to
send an arbitrarily long text string message to the front end, in order to provide status information.

The front end is allowed to register an arbitrary number of callbacks of each type. In order to ease the
difficulty of processing the callbacks, the engine needs only to take the viewpoint of there being three types
of callbacks. Whenever a type of callback is proceesed by the engine, all of the registered callbacks of that
type due to be processed at that time are executed in sequence. There is nonblocking semantics defined for
each type of callback processing, so the engine can potentially overlap callback execution with other useful
computation. Furthermore, the execution of the three types of callbacks can be overlapped.

Message callbacks are the simplest variety, simply sending a text string from the engine to the front end
at the convenience of the engine. This means that the engine does not need to execute message callbacks
unless it really wants to provide information to the front end. Standard callbacks and force callbacks are
more involved because they involve some sort of access of engine data arrays. The engine designates via
access flags which arrays are eligible for a particular kind of callback as well as the type of access permitted
on the array during the callback. This means that an engine will not need support for, say, force callbacks
if none of the engine data arrays permit the front end with this kind of access. However, if some type of
callback access has been permitted on a particular array, then the engine is obligated to execute that type
of callback when expected.

There are three types of engine data array access permitted for both standard and force callbacks (i.e. six
distinct access flags). Read access allows the array to be received by the front end, but not modified. Write
access allows the array to be written to by the front end, but the current values in the array might not
be available. Read and write access can be requested together by the front end, allowing the array values
to be received and modified. Share access permits the front end to provide its own array buffer of values
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that will be copied into the engine array buffer. Although the copying of data from the front end provided
buffer occurs transparently to the engine, if share access is permitted with resize access, the front end is
actually able to change the length (and maximum capacity) of the array. In the event that the length of
the array changes, the MD MODIFY status bit is set on the array which should then be acknowledged by the
engine through MD engdata ackmod() after the callback processing has finished. The main purpose for share
access is to allow the front end to send to the engine during the simulation an arbitrarily large array of data
whose length cannot be determined a priori. The engine can enable any of these types of access on a given
array, however, the front end may only access a particular array as one of either read, write, read–write, or
share. Note that the front end may request an array be provided multiple times to a particular callback;
for example, this would allow read access to the array through one MD Cbdata element and share access to
the same array through another MD Cbdata element. A complete discussion of access flags is presented in
Sec. 6.1.2, and the details of the MD Cbdata data structure are provided in Sec. 6.1.1.

There are four routines associated with the processing of the separate callback types. The “ready” routine
returns immediately telling if any callbacks of that type are ready to be processed. For message and force call-
backs, these routines simply tell whether any callbacks of that given type have been registered, since they will
then always be ready for processing. This means that MD ready msgcallback() and MD ready fcallback()
need only be called once at the beginning of the run routine. The processing of a particular standard callback
depends on the step number, so MD ready callback() must be called after the completion of each time step
to see if any standard callbacks need processing. The actual processing of some type of callback is performed
by calling the appropriate “exec” routine. The syntax of these calls is as follows.

MD_exec_callback(frnt);
MD_exec_fcallback(frnt, timestepfrac);
MD_exec_msgcallback(frnt, "engine message to front end");

No additional data is needed to process standard callbacks. Force callbacks need to know the timestepfrac
which, when added to the current step number and the quantity scaled by the time step, will give the time
value for the positions at that force evaluation. As an example, leapfrog (velocity–Verlet) integration requires
only one force evaluation for each step in which the positions have already been advanced by one time step,
meaning that timestepfrac = 1. Message callbacks need the text string as an additional argument. The
“exec” routines each have nonblocking semantics, so each of the callback types has its own routines “test”
to see if the processing has finished and “wait” to block for completion. The engine is permitted to overlap
processing of different types of callbacks, but it must not initiate another callback processing of the same
type before a previous callback processing of that type has completed. Also, the engine should not update
a data array while it might be involved in a callback, nor should it make use of a data array while it might
be updated by a callback.

The final concept to keep in mind is that standard callbacks might require processing before taking any
time steps in order to, say, provide energy reductions at step 0. This would, of course, require an initial
force evaluation at time 0 which might entail processing force callbacks. Assume that the Engine data
structure contains at least the following MD Engdata arrays that have been established using the indicated
access permissions.

typedef struct Engine_tag {
MD_Engdata *pos; /* MD_READ | MD_WRITE | MD_CBREAD | MD_FCBREAD */
MD_Engdata *vel; /* MD_READ | MD_WRITE | MD_CBREAD */
MD_Engdata *extforce; /* MD_WRITE | MD_FCBWRITE */
MD_Engdata *result; /* MD_READ | MD_CBREAD */
MD_Engdata *atom; /* MD_WRITE */

} Engine;

The access permission flags listed for the MD Engdata arrays would be typical in practice. The main data
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of interest to standard callbacks would be the position and velocity for saving trajectory and restart files
along with the reduction results for monitoring energy and temperature during the simulation. A single
array might be devoted entirely to external forces supplied by the front end, the computation of which would
depend on receiving the positions.

The following code example based on the Engine data outlines a simple run routine implementation in which
there is no overlap of callback processing with computation and the computational work shown using com-
ments. Nevertheless, the form of the run routine is evident, including dealing with data array modifications,
incrementing the step number, and processing callbacks.

int32 engine_run(MD_Front *frnt, int32 numsteps, int32 flags) {
Engine *e = MD_engine_data(frnt);
int32 isfcb = MD_ready_fcallback(frnt);
int32 natoms = e->atom->attrib.len;

/* clear memory for external force array */
memset(e->extforce->buf, 0, natoms * sizeof(MD_Dvec));

if (flags & MD_UPDATE) {
update(frnt);
/* must also evaluate forces */
/* force: f = force(pos) */
if (isfcb && (MD_exec_fcallback(frnt, 0) || MD_wait_fcallback(frnt))) {
return MD_FAIL;

}
/* add in external forces: f += extforce */

}

if (MD_ready_callback(frnt)) {
/* update result reductions before callback */
if (MD_exec_callback(frnt) || MD_wait_fcallback(frnt)) {
return MD_FAIL;

}
}

for (step = 0; step < numsteps; step++) {
/* half-kick: vel += dt/2 * force / mass */
/* drift: pos += dt * vel */
/* force: f = force(pos) */
if (isfcb && (MD_exec_fcallback(frnt, 0) || MD_wait_fcallback(frnt))) {
return MD_FAIL;

}
/* add in external forces: f += extforce */
/* half-kick: vel += dt/2 * force / mass */

MD_incrstep(frnt);

if (MD_ready_callback(frnt)) {
/* update result reductions before callback */
if (MD_exec_callback(frnt) || MD_wait_fcallback(frnt)) {
return MD_FAIL;

}
}
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}
/* update result reductions before returning */
return 0;

}

The processing of force callbacks can be overlapped with the force computation, which turns out to require
the majority of computational effort. However, force callback processing cannot be performed until after
the next positions are available and must complete with the contribution totaled before the final half-kick
of the integration. For standard callbacks, if additional buffer space is used and if the position array with
MD CBREAD access is separated from a different position array with MD FCBREAD access, then the overlap could
be from the end of one step until right before the next step number incrementation.

4.2.6 Examining callback data requirements

The complexity of the engine might necessitate specific knowledge of the data requirements for callbacks. For
example, a parallel engine would need to perform a gather operation to ensure update position and velocity
arrays for a callback that needs them, but would not want to waste time unless these quantities are needed.

The MD callback list() function returns the const array of type MD Callback that contains all of the
registered standard callbacks. The members of interest in each MD Callback structure element are MD Cbdata
*cbarg that gives the array of MD Cbdata that is received by that callback, cbarglen that gives the length
of the cbarg array, stepincr that indicates in number of steps how often that callback will need processing,
and nextstepnum that tells the number of the next step when that callback will need processing. (Recall
that the current step number is available through MD stepnum().)

Examination of the MD Cbdata array for each callback will tells exactly its engine data array requirements.
Each MD Cbdata structure element has a member engdata that points to a particular engine data array, as
well as members access which indicates the requested access (for a standard callback, some combination of
MD CBREAD, MD CBWRITE, and MD CBSHARE) and members nelems and first that will tell the extent of the
sub-array needed. See Sec. 6.1.1 for further details regarding the MD Cbdata data structure.

The MD fcallback list() function returns the const array of type MD Callback that contains all of the
registered force callbacks. This reveals exactly the same information as discussed for standard callbacks, ex-
cept that the stepincr and nextstepnum fields are meaningless since all force callbacks need to be processed
with every force evaluation.

4.2.7 Resizing data arrays

The engine is able to resize data arrays if they have been established with some combination of MD ESETLEN
and MD ESETMAX (or MD ERESIZE) access. One example might be to offer the front end a force array with
(MD READ | MD ERESIZE) permission. The engine would then, during update(), resize the array to match
the number of atoms in the system. The routines that perform the resizing are:

MD_engdata_setlen(frnt, e->force, newlen);
MD_engdata_setmax(frnt, e->force, newmax);
MD_engdata_resize(frnt, e->force, newlen, newmax);

They work almost exactly like their front end counterparts, except that the second argument takes a pointer
to MD Engdata rather than a data identification number. There are probably other examples in which it is
easier to have the MDAPI layer manage array memory rather than the engine.
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4.3 Cleanup

The engine cleanup routine called through MD done() has the following prototype.

void engine done(MD Front *frnt);

The name engine done is used here as a placeholder; the actual name of this function is either specified by
the front end (passed as a function pointer to MD init()) or determined by the MDAPI implementation
support for dynamic loading of an engine module. The received frnt argument points to the front end
object.

The main responsibility is for the engine to free memory that it has allocated. The only exception is with
any MD Engdata arrays established using MD engdata manage(), which might have been initially allocated
by the engine but will be freed by the MDAPI. These tasks are done once at the end of each engine object,
so engine done can be viewed as the destructor for the engine.

The MDAPI layer MD done() routine initially calls engine done before freeing its own memory allocations.
In situations involving engine-managed buffer space established with MD engdata manage(), it is possible
that the array buffer space will need to be freed before, rather than after, the engine. The engine is able to
force the MDAPI layer to free all MD Engdata buffer allocations immediately by calling:

MD_free_data(frnt);



Chapter 5

Assumptions for Interoperability

In order to maintain a basic level of interoperability between any given front end and engine, expected units
and standard names for particular data arrays must be defined. The following table, repeated in a slightly
abbreviated form from Chap. 2, gives the standard names for data arrays along with type and intended
purpose, and has been extended to include expected access permissions as well as units for position, velocity,
and force. (Note that the units for force field parameter data types are already well-defined.) This table
offers the minimum requirements for engines to be compatible with front ends. It is likely that these arrays
will also permit MD RESIZE and, for performance, enable MD CBREAD on position and velocity arrays.

array name data type access purpose and properties
"atom" MD Atom MD WRITE parameters required for each atom,

defines ordering of atoms in system
"pos" MD Dvec MD READ | MD WRITE position (in Å) for each atom,

or MD Fvec uses same ordering as "atom"
"vel" MD Dvec MD READ | MD WRITE velocity (in Å/fs) for each atom,

or MD Fvec uses same ordering as "atom"
"force" MD Dvec MD READ force (in kcal/mol/Å) for each atom,

or MD Fvec uses same ordering as "atom"
"bond" MD Bond MD WRITE defines covalent bonds in system
"angle" MD Angle MD WRITE defines angle bonds in system
"dihed" MD Tors MD WRITE defines dihedral torsion angles in system
"impr" MD Tors MD WRITE defines improper torsion angles in system
"excl" MD Excl MD WRITE pairs excluded from nonbonded interactions
"atomprm" MD AtomPrm MD WRITE nonbonded force field parameters

for each atom type
"bondprm" MD BondPrm MD WRITE covalent bond force field parameters

based on atom types involved in bond
"angleprm" MD AnglePrm MD WRITE angle bond force field parameters

based on atom types involved in angle
"dihedprm" MD TorsPrm MD WRITE dihedral torsion angle parameters

based on atom types involved in dihedral
"imprprm" MD TorsPrm MD WRITE improper torsion angle parameters

based on atom types involved in improper
"nbfixprm" MD NbfixPrm MD WRITE pairwise corrections to nonbonded

force field parameters
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The engine may wish to define a single-element array "param" of engine-defined type "Param" containing
simulation parameters. Simulation parameters should include at least the following.

array name data type purpose and properties
"timestep" double or float time step (in fs) for integration
"cutoff" double or float nonbonded interaction cutoff (in Å)
"switchdist" double or float van der Waals switching distance (in Å)

They should either be members of the "Param" type or fixed-size single element arrays. Generally, the front
end should consider any engine data array a simulation parameter if it has a single-element fixed size, is of
a primary type, and permits write access. The exception is if an engine data array of char has multiple
elements or is resizeable; in this case it should be treated as a string (and any value set by the front end
should be nil-terminated). It is also advantageous for a simulation parameter to permit read access to allow
the front end to see default parameter values. Note that predefined types MD String and MD Message should
be considered deprecated.

The engine may also wish to define a single-element array "result" of engine-defined type "Result" con-
taining simulation reduction results. Reductions should include at least the following.

array name data type purpose and properties
"energy" double or float total energy (in kcal/mol) of system
"temp" double or float temperature (in ◦K) of system

They should either be members of the "Result" type or fixed-size single element arrays. Generally, the front
end should consider any engine data array a simulation reduction result if it has a single-element fixed size,
is of a primary type, and permits read without write access. For performance reasons, it is recommended
that the engine does define "result" with MD CBREAD access to allow the front end to monitor it through a
callback. The "Result" members should only contain time-dependent reductions. For example, the system
energy, temperature, and pressure are all time-dependent quantities. The number of degrees of freedom is
not a time-dependent quantity, so should not be a "Result" member.



Chapter 6

Complete Reference

This chapter provides a complete reference for the MDAPI, including all user-level constants, type definitions,
and function prototypes that comprise the interface specification. The semantics of each routine is presented
along with the errors that might possibly occur. The predefined data types and related constants from
mdtypes.h are not presented here, since the interface is kept independent from the data communicated
between front end and engine; see Chap. 2 for details about the representation of the molecular system.

The chapter is organized around the names of the header files. There should never be a need to explicitly
include the mdcommon.h header file, since it is included by the other header files. Instead, codes using the
MDAPI should include either mdfront.h to make use of the front end interface or mdengine.h to make use
of the engine interface.

6.1 Definitions Common to Front End and Engine

The definitions common to the front end and engine are found in the mdcommon.h header file. This file is
included by both mdfront.h and mdengine.h.

6.1.1 Objects

Type: MD Interface

Summary: The interface object.

Definition: typedef struct MD Interface tag {
/* contents opaque to front end and engine */

} MD Interface;

Description: This is the primary storage container for the MDAPI layer. The front end creates an instance
of the object (either on the stack or allocated on the heap as an MD Engine object, see Sec. 6.2
for details). The engine receives a pointer to the object as a parameter to its entry routines
(as an MD Front object, see Sec. 6.3 for details).

The MD Interface object defines the state of the MDAPI layer as the interface between a par-
ticular front end and engine. A pointer to an instance of the object is the first argument to all
of the MDAPI routines for both front end and engine. The internal members of MD Interface
are implementation dependent, so should never be accessed directly.
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Type: MD Attrib

Summary: The engine data attribute object.

Definition: typedef struct MD Attrib tag {
int32 type;
int32 len;
int32 max;
int32 access;

} MD Attrib;

Description: Every engine data array has an associated attribute object. The type member indicates the
data type of the array elements. The len member gives the used storage length of the array,
in number of elements. The max member gives the maximum allocation of the array, also
in number of elements. The access member is a bit-field indicating the access permissions
granted to the front end by the engine along with some internal status flags.

Type: MD Cbdata

Summary: The callback data object specifies an engine data sub-array to be received by a callback routine.

Definition: typedef struct MD Cbdata tag {
/* set by front end for initialization */

int32 idnum;
int32 access;
int32 nelems;
int32 first;

/* provided to engine */
MD Engdata *engdata;

/* provided to callback routine */
void *data;
MD Attrib attrib;

} MD Cbdata;

Description: The front end can establish callbacks to itself during a running simulation. There are three
types of callbacks: standard, force, and message, all explained in Sec. 6.2. The standard and
force callback routines receive an array of MD Cbdata through which engine data sub-arrays
are passed. Setting up a callback also requires an array of MD Cbdata to specify the engine
data sub-arrays needed by the callback routine.

Each MD Cbdata object in the array specifies a particular engine data sub-array. The front
end sets the fields idnum, access, nelems, and first for initialization. The idnum member
is set to the engine data array identification number. The access member indicates the
requested access, the choices being some bitwise ORing of access flags MD CBREAD, MD CBWRITE,
and MD CBSHARE for a standard callback, or MD FCBREAD, MD FCBWRITE, and MD FCBSHARE for
a force callback. Note that the semantics of *SHARE access is different so cannot be combined
with either *READ or *WRITE. The nelems member indicates the number of elements desired
from the sub-array, where −1 is used to indicate “all elements.” The first member indicates
the index of the first element from the engine data array to be included in the sub-array.

The engdata member is provided to the engine as a handle to the particular engine data array
that is being accessed through the callback. (Note that the front end refers to the engine
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data arrays using identification numbers, whereas the engine is provided with a pointer to an
MD Engdata object.) Use of this is important to the engine when determining which portions
of arrays are needed for callbacks.

The last two members are provided to the callback routine. The attrib member contains the
attributes for the engine data array. In the case of either or both of *READ or *WRITE sub-array
access, the data member points to that sub-array of the indicated engine data array indexed
starting with first and containing nelems number of elements, or extending through the last
element of the array if nelems = −1. Having *READ access provides the callback with values
to use, *WRITE access permits the callback to set values, and both *READ and *WRITE access
provides the callback with sub-array values to use and modify. If the front end and engine
share the same memory space, then data might point into the actual array. Otherwise, the
sub-array space is buffered in the front end memory space.

The *SHARE access changes the semantics. In this case, the callback receives data = NULL
and nelems = first = 0, and it is up to the callback to provide the sub-array buffer to the
engine. The sub-array semantics still apply, with values to nelems and first describing what
portion of the engine data array is being provided by the callback sub-array buffer and possibly
resizing the data array, so these values need to be set carefully by the callback. The front end
retains ownership of the memory it sends through the data pointer, with copy semantics
like MD writesub(), which means that the same memory buffer can be reused on subsequent
callbacks, and the front end is responsible for freeing the memory. This mechanism is provided
to allow the front end to send arbitrary length arrays to the engine during a simulation.

The *SHARE access cannot be combined with the other access types. For instance, the front end
cannot set callback access to MD CBREAD and MD CBSHARE for the given MD Cbdata element, even
through the engine could have enabled both MD CBREAD and MD CBSHARE access on the same
data array. It is possible for the front end to establish different access to the same data array
using two different MD Cbdata elements in the array of MD Cbdata passed to the MD callback()
or MD fcallback() routines. So, if the callback wished to see the current data array contents
before updating its shared buffer, it could set one MD Cbdata element to MD CBREAD access and
a second to MD CBSHARE access (assuming that the engine had enabled both kinds of access on
the data array).

Data array resize changes that might occur with *SHARE access are permitted only if the
front end is granted access to do so. Otherwise, MD ERR CBSHARE will be set by the callback
processing. If the data array is resized, the MD MODIFY flag is set on the engine data array.

Examples: Use the declaration: MD Cbdata c;

If the data array allows MD CBREAD and MD CBWRITE access, then it is permissible to set
c.access = MD CBREAD or c.access = MD CBWRITE or c.access = MD CBREAD | MD CBWRITE.

Suppose that the engine data array has len = 10. Then setting c.first = 3 and c.nelems = 5
means that, within the callback, data[0..4] will correspond to engine array data[3..7].

Suppose that the callback needs to receive the entire engine data array, but the length is
unknown (e.g. the engine is allowed to resize it). Then set nelems = −1 and first = 0. If all
but the first element is desired, then set nelems = −1 and first = 1, etc.

Type: MD Member

Summary: The member object describes a member of a derived data type.

Definition: typedef struct MD Member tag {
int32 type;
int32 len;
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const char *name;
} MD Member;

Description: Derived data types are viewed as structures of primary and previously defined derived types.
An array of MD Member describes the members of the derived type, where type indicates the
data type number of the member, len indicates the number of elements of this member to
allow for a statically defined array, and name is the nil-terminated string name of the member.

For primary types, MD Member is given with len = 1 and name = "" (the empty string). Note
that name is not the name of the type, rather the name of the member having this type. Also,
recall that MD Fvec and MD Dvec are considered primary types.

Examples: int32 has a 1-element MD Member array:

{{MD INT32, 1, ""}}

MD Dvec has a 1-element MD Member array, since it is a primary type:

{{MD DVEC, 1, ""}}

MD BondPrm has a 3-element MD Member array:

{{MD DOUBLE, 1, "k"}, {MD DOUBLE, 1, "r0"}, {MD NAME, 2, "type"}}

6.1.2 Access flags

Engine data arrays each have an access flag attribute, the access member of MD Attrib, stored as an int32
bit-field to grant the front end particular access rights for that array. The access flags which may be set by
the engine are listed by name in the following table along with a brief description.

access flag description
MD READ read access
MD WRITE write access
MD CBREAD read during callback
MD CBWRITE write during callback
MD CBSHARE shared data from front end during callback
MD FCBREAD read during force callback
MD FCBWRITE write during force callback
MD FCBSHARE shared data from front end during force cb
MD SETLEN front end allowed to set length
MD SETMAX front end allowed to set maximum allocation
MD RESIZE MD SETLEN | MD SETMAX
MD ESETLEN engine allowed to set length
MD ESETMAX engine allowed to set maximum allocation
MD ERESIZE MD ESETLEN | MD ESETMAX
MD DIRECT direct access
MD NOSHARE do not permit front end shared buffer
MD NOTIFY notify engine of front end updates

The engine sets these access permissions when it establishes the engine data array, by calling MD engdata()
or one of the alternative routines. These particular access permissions remain fixed for the array.

The MDAPI layer may set additional access flags that act more like status flags since these particular access
permissions might change.
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access flag description
MD SHARE front end allowed to share its buffer
MD UNSHARE front end allowed to take back its buffer
MD MODIFY front end has modified buffer (“dirty bit”)

The MD SHARE and MD UNSHARE flags permit use of front end shared buffers through the MD share() and
MD unshare() routines (defined in Sec. 6.2). The MD MODIFY flag marks the array as having been modified
by the front end, to assist the engine with the initialization of the simulation. This “dirty bit” is toggled off
by the engine call to MD engdata ackmod() (defined in Sec. 6.3).

6.1.3 Global status flags

There are some internal flags denoting the status of the MD Interface object. The two flags intended for
external use are shown in the following table.

status flag description
MD CBFIRST front end sets this to run flag to invoke callbacks before first step
MD UPDATE engine tests run flags to see if data array with MD NOTIFY flag was modified

These flags are used in conjunction with running the simulation. The front end invokes MD run() with a
runflags argument (see Sec. 6.2). Logical ORing MD CBFIRST into the run flags will tell the MDAPI layer that
all callbacks are to be processed before the first time step (i.e. on the zeroth step). Otherwise, each callback
is scheduled to be processed after stepincr steps have been taken (see the definitions of MD callback()
in Sec. 6.2 and MD Callback in Sec. 6.3). The engine receives the runflags to its run routine entry point
and can test against the MD UPDATE flag being set to see if there is some data array having MD NOTIFY access
that has been modified by the front end (i.e. the MD MODIFY status flag is set on the array). The engine
should deal with these reported data array modifications and should then invoke MD engdata ackmod() to
acknowledge the array modification, which removes the MD MODIFY status (see Sec. 6.3 for details).

6.1.4 Error constants

MDAPI routines that return int32 typically denote an error condition with value MD FAIL (−1). An error
number, internal to the MD Interface object, is set to report the specific error (similar to errno used by
the standard C library). The possible error constants and corresponding diagnostic messages are listed in
the following table.
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error constant diagnostic message
MD ERR NONE "Success"
MD ERR VERSION "Inconsistent version number"
MD ERR MEMALLOC "Memory cannot be allocated"
MD ERR INIT "Engine initialization failed"
MD ERR RUN "Engine run simulation failed"
MD ERR CHECK "Consistency check failed"
MD ERR NEWDATA "Cannot create new engine data"
MD ERR NEWTYPE "Cannot create new type"
MD ERR NAME "Unrecognized name string"
MD ERR IDNUM "Invalid data ID number"
MD ERR TYPENUM "Invalid type number"
MD ERR RANGE "Value is out of range"
MD ERR ACCESS "Access is denied"
MD ERR CALLBACK "Callback routine failed"
MD ERR CBSHARE "Callback shared buffer failed"

6.2 Front End Interface Specification

The routines presented here provide the front end interface to the MDAPI. The definitions and prototypes
are all found in the mdfront.h header file. The front end declares a variable of type MD Engine (or allocates
an instance on the heap), then uses a pointer to this MD Engine object in all of the routines.

6.2.1 Objects

Type: MD Engine

Summary: The engine object.

Definition: typedef MD Interface MD Engine;

Description: This is just the MD Interface from Sec. 6.1 renamed to appear as an engine object. The front
end needs to allocate space for this, either on the stack or the heap.

All of the front end API calls operate on the engine object, requiring a pointer to the object
passed as the first argument, analogous to the C++ this pointer. The first call must be to
the MD init() constructor to initialize the engine. Use of the object is finished by calling the
MD done() destructor to cleanup the engine and deallocate memory. The MDAPI layer is itself
reentrant, so the front end can manipulate multiple engine objects simultaneously, and these
can all invoke the same engine as long as the engine itself is also reentrant.

6.2.2 Initialization and cleanup

Function: MD init()

Summary: Initialize the MDAPI layer and the specified engine.

Prototype: int32 MD init(MD Engine *e, const char *engname, int32 flags,
int32 (*engine init)(MD Engine *, int32 flags),
void (*engine done)(MD Engine *));
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Arguments: e — points to a valid, uninitialized MD Engine object

engname — name of engine, nil-terminated string

flags — implementation dependent, passed on to engine init()

engine init — constructor for engine

engine done — destructor for engine

Description: For the case in which one or more engines are linked to the front end, the engine constructor
and destructor routines need to be passed. Here, the engname string is remembered, but useful
only for labeling a particular engine.

For the case in which an engine is dynamically loaded or remotely invoked, the engine init
and engine done pointers should be NULL, and behavior is determined by the engname string
(and perhaps also by the flags). Suggested string interpretation is

[[user@]hostname:]pathname

which covers dyanmically loadable engines on the local machine as well as remote engines.

No flags are (currently) defined by the API, but this value is passed as an argument to
engine init() to permit implementation dependent flags.

Call has nonblocking semantics (see below).

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR VERSION — inconsistent version number

MD ERR MEMALLOC — memory cannot be allocated

MD ERR NEWDATA — (from engine init()) cannot create new engine data

MD ERR NEWTYPE — (from engine init()) cannot create new type

MD ERR INIT — default fatal error indicating that the engine initialization failed

Note that any error state returned here is fatal.

Function: MD done()

Summary: Cleanup engine and MDAPI layer.

Prototype: void MD done(MD Engine *);

Description: Calls engine done() routine (see MD init()), frees engine data array buffers (where neces-
sary), and frees memory allocations made within MDAPI layer.

6.2.3 Obtaining data array names and ID numbers

Function: MD idnum()

Summary: Obtain the ID number for an engine data array.

Prototype: int32 MD idnum(MD Engine *, const char *name);

Arguments: name — data array name identifier, nil-terminated string

Description: Given the nil-terminated string name of a data array, return its identification number. Case
sensitive string-matching is performed.
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Return value: Returns the nonzero identification number corresponding to the recognized data array name,
or MD FAIL if no match is found.

Errors: MD ERR NAME — name does not match any engine data arrays

Function: MD name()

Summary: Obtain the name for an engine data array.

Prototype: const char *MD name(MD Engine *, int32 idnum);

Arguments: idnum — data array identification number

Description: Given the identification number of a data array, return its (primary) name. This routine is
the inverse of MD idnum().

Return value: Returns the nil-terminated string name of the data array or NULL on error.

Errors: MD ERR IDNUM — invalid data ID number

Function: MD namelist()

Summary: Obtain the list of data array names.

Prototype: const char **MD namelist(MD Engine *, int32 *listlen);

Arguments: listlen — points to an integer variable

Description: The list of names of all engine data arrays is returned, with the length of the list returned
through the listlen pointer.

Return value: Returns a pointer to an array of nil-terminated strings and modifies the value of the int32
variable pointed to by listlen.

Errors: None (always succeeds).

6.2.4 Obtaining attributes of data arrays

Function: MD attrib()

Summary: Obtain the attributes of an engine data array.

Prototype: MD Attrib MD attrib(MD Engine *, int32 idnum);

Arguments: idnum — data array identification number

Description: The attributes of the indicated engine data array are returned.

Return value: Returns the MD Attrib attribute structure for the indicated data array. If an error occurs,
the return value is the MD Attrib structure with all fields set to MD FAIL (e.g. test against the
attrib.type field).

Errors: MD ERR IDNUM — invalid data ID number
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6.2.5 Resizing data arrays

Function: MD setlen()

Summary: Set the length attribute for an engine data array.

Prototype: int32 MD setlen(MD Engine *, int32 idnum, int32 newlen);

Arguments: idnum — data array identification number

newlen — new length value

Description: This call sets the length for the specified engine data array, indicating the number of elements
used in the array. The array must permit MD SETLEN access. If newlen > attrib.max with
MD SETMAX access also permitted, then the buffer allocation is extended to attrib.max =
attrib.len = newlen.

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR IDNUM — invalid data ID number

MD ERR ACCESS — access MD SETLEN is not permitted

MD ERR MEMALLOC — memory cannot be allocated

MD ERR RANGE — newlen < 0 or newlen > attrib.max without MD SETMAX access permission

Function: MD setmax()

Summary: Set the maximum allocation attribute for an engine data array.

Prototype: int32 MD setmax(MD Engine *, int32 idnum, int32 newmax);

Arguments: idnum — data array identification number

newmax — new maximum array allocation value

Description: This call sets the maximum allocation for the specified engine data array, indicating the max-
imum number of elements that can be stored in the memory buffer. The array must permit
MD SETMAX access. If newmax < attrib.len with MD SETLEN access also permitted, then the
buffer allocation is truncated to attrib.len = attrib.max = newmax.

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR IDNUM — invalid data ID number

MD ERR ACCESS — access MD SETMAX is not permitted

MD ERR MEMALLOC — memory cannot be allocated

MD ERR RANGE — newmax < 0 or newmax < attrib.len without MD SETLEN access permission

Function: MD resize()

Summary: Set both the length and maximum allocation attributes for an engine data array.

Prototype: int32 MD resize(MD Engine *, int32 idnum, int32 newlen, int32 newmax);

Arguments: idnum — data array identification number

newlen — new length value
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newmax — new maximum array allocation value

Description: This call sets both the length and maximum allocation for the specified engine data array.
The maximum allocation indicates the number of elements that can be stored in the memory
buffer. The length indicates the number of elements used in the array. It is necessary that
0 ≤ newlen ≤ newmax. The array must permit MD RESIZE access (which is the same as
both MD SETLEN and MD SETMAX access). If newlen > attrib.max then the buffer allocation
is extended to accomodate. Similarly, if newmax < attrib.len then the buffer allocation is
truncated.

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR IDNUM — invalid data ID number
MD ERR ACCESS — access MD RESIZE is not permitted
MD ERR MEMALLOC — memory cannot be allocated
MD ERR RANGE — newlen < 0 or newmax < 0 or newmax < newlen

6.2.6 Synchronizing nonblocking routines

Some of the front end API calls that follow (as well as MD init() previously) have nonblocking calling
semantics. An implementation of MDAPI that supports nonblocking calls enables use of MDAPI for advanced
front ends (e.g. provides a GUI) which cannot afford to lose control for an indefinite length of time. In such an
implementation, a nonblocking call returns control back to the front end immediately but has not necessarily
completed the results of its operation. The completion of the nonblocking call must be either tested true
with MD test() or waited for with MD wait(), synchronizing the front end and engine, before any other API
call is invoked.

Note that for the single-threaded MDAPI implementation, all routines run to completion and the synchro-
nization routines are stubbed: MD test() always returns 1 (true) and MD wait() always returns 0 (success).

Function: MD test()

Summary: Tests whether a nonblocking routine has completed.

Prototype: int32 MD test(MD Engine *);

Description: This call returns immediately, indicating whether or not the most recent nonblocking front end
API routine has completed.

Return value: Returns true (positive value) if the nonblocking call has successfully completed or 0 if the call
has not yet completed. Returns MD FAIL if the call has completed but an error occurred.

Errors: Depends on the nonblocking routine.

Function: MD wait()

Summary: Wait for a nonblocking routine to complete.

Prototype: int32 MD wait(MD Engine *);

Description: This call blocks to wait for the most recent nonblocking front end API routine to complete,
synchronizing the front end with the engine and MDAPI layer.

Return value: Returns 0 on success or MD FAIL on error.

Errors: Depends on the nonblocking routine.
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6.2.7 Reading from engine data arrays

Function: MD read()

Summary: Read from an entire engine data array.

Prototype: int32 MD read(MD Engine *, int32 idnum, void *buf, int32 len);

Arguments: idnum — data array identification number

buf — buffer to be filled from data array

len — length of array in elements

Description: Read from the beginning of an engine data array len elements and copy into buf. Array must
permit MD READ access. This call has nonblocking semantics. Front end needs to have allocated
sufficient space for buf and retains control of this memory. buf should not be accessed until
after call completes.

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR IDNUM — invalid data ID number

MD ERR ACCESS — access MD READ is not permitted

MD ERR RANGE — len < 0 or len > attrib.len

Function: MD readsub()

Summary: Read from part of an engine data array.

Prototype: int32 MD readsub(MD Engine *, int32 idnum, void *buf, int32 nelems,
int32 first);

Arguments: idnum — data array identification number

buf — buffer to be filled from data array

nelems — number of elements to read

first — first element to index from

Description: Read from a sub-array of an engine data array and copy into buf. Array must permit MD READ
access. The sub-array is defined by first as the first index and nelems as the number of
elements (or length). This call has nonblocking semantics. Front end needs to have allocated
sufficient space for buf and retains control of this memory. buf should not be accessed until
after the call completes.

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR IDNUM — invalid data ID number

MD ERR ACCESS — access MD READ is not permitted

MD ERR RANGE — first < 0 or nelems < 0 or first + nelems > attrib.len

MD read(e,id,buf,n) is equivalent to MD readsub(e,id,buf,n,0).
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6.2.8 Writing to engine data arrays

Function: MD write()

Summary: Write to an entire engine data array.

Prototype: int32 MD write(MD Engine *, int32 idnum, const void *buf, int32 len);

Arguments: idnum — data array identification number

buf — buffer used for writing to data array

len — length of array in elements

Description: Write to the beginning of an engine data array len elements the contents of buf. Array must
permit MD WRITE access. Front end retains control of the buf memory. If communicating with
a remote engine, the front end writes to local buffer space instead of immediately modifying
the engine data array, so the call does not have nonblocking semantics.

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR IDNUM — invalid data ID number

MD ERR ACCESS — access MD WRITE is not permitted

MD ERR RANGE — len < 0 or len > attrib.len

Function: MD writesub()

Summary: Write to part of an engine data array.

Prototype: int32 MD writesub(MD Engine *, int32 idnum, const void *buf, int32 nelems,
int32 first);

Arguments: idnum — data array identification number

buf — buffer used for writing to data array

nelems — number of elements to write

first — first element to index from

Description: Write to a sub-array of an engine data array, copied from buf. Array must permit MD WRITE
access. The sub-array is defined by first as the first index and nelems as the number of
elements (or length). Front end retains control of the buf memory. If communicating with a
remote engine, the front end writes to local buffer space instead of immediately modifying the
engine data array, so the call does not have nonblocking semantics.

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR IDNUM — invalid data ID number

MD ERR ACCESS — access MD WRITE is not permitted

MD ERR RANGE — first < 0 or nelems < 0 or first + nelems > attrib.len
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6.2.9 Providing data buffer space

Function: MD share()

Summary: The front end shares its data buffer with the engine.

Prototype: int32 MD share(MD Engine *, int32 idnum, void *buf, int32 len, int32 max);

Arguments: idnum — data array identification number

buf — allocated buffer

len — number of elements initialized in buffer

max — maximum number of elements available in buffer

Description: The engine data array must permit MD SHARE access. Note that MD SHARE access is provided
by the MDAPI layer, not by the engine.

The front end provides the data buffer to be used for this data array. Control of the data
buffer is yielded by the front end until either MD unshare() is called on this idnum or until
MD done(). However, the front end is still responsible for managing this memory (i.e. freeing
it) after control is regained.

When the data buffer is established through MD share(), MD SETMAX is no longer permitted
(i.e. the memory allocation cannot be resized). Until control of memory is regained, the front
end should access it through API calls rather than directly.

Note that an engine data array may have MD SHARE access only if there is no buffer space yet
allocated to it (i.e. attrib.max = 0). Such an array will have MD SHARE access disabled if the
buffer is resized by, say, MD setmax().

This call does not block, so it does not have nonblocking semantics.

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR IDNUM — invalid data ID number

MD ERR ACCESS — access MD SHARE is not permitted

MD ERR RANGE — len < 0 or max < len

Function: MD unshare()

Summary: Front end regains control of shared data buffer previously offered through MD share().

Prototype: void *MD unshare(MD Engine *, int32 idnum);

Arguments: idnum — data array identification number

Description: MD UNSHARE access is enabled on a data buffer (by the MDAPI layer) by a successful call to
MD share().

After successful completion of MD unshare(), the engine data buffer will no longer have any
memory allocation (i.e. attrib.max = 0) and MD SHARE access will again be enabled, returning
the engine data buffer to its prior state before MD share() was invoked on it.

This call does not block, so it does not have nonblocking semantics.

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR IDNUM — invalid data ID number

MD ERR ACCESS — access MD UNSHARE is not permitted



74 CHAPTER 6. COMPLETE REFERENCE

6.2.10 Accessing data array buffers directly

Function: MD direct()

Summary: Obtain direct access to an engine data array buffer.

Prototype: void *MD direct(MD Engine *, int32 idnum);

Arguments: idnum — data array identification number

Description: Buffer must permit MD DIRECT access.

This routine makes the data array buffer directly accessible to the front end. Hoever, it must
be used with caution. For instance, if MD setmax() or MD resize() resizes the memory buffer
of a data array, this will most likely invalidate any pointer returned for that array prior to the
resizing.

This call has nonblocking semantics. For a remote engine MDAPI implementation, this routine
might have to allocate local buffer for the array and populate it.

Return value: Returns either a pointer to the data array memory buffer or NULL if array has attrib.max = 0
or if an error occurs.

Errors: MD ERR IDNUM — invalid data ID number

MD ERR ACCESS — access MD DIRECT is not permitted

MD ERR MEMALLOC — local buffer space cannot be allocated

Function: MD setmod()

Summary: Indicate that a directly accessed engine data array buffer has been modified.

Prototype: int32 MD setmod(MD Engine *, int32 idnum);

Arguments: idnum — data array identification number

Description: Buffer must permit MD DIRECT access.

This routine marks the “dirty bit” on the access flag, indicating that the contents of the data
array has been modified. So this should be called if the front end directly modifies the memory
buffer obtained from MD direct().

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR IDNUM — invalid data ID number

MD ERR ACCESS — access MD DIRECT is not permitted

6.2.11 Updating data array modifications to the engine

Function: MD update()

Summary: Provide the engine with data array buffer modifications.

Prototype: int32 MD update(MD Engine *);
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Description: For a front end connected to a remote engine, writing to data array buffers will (most likely)
be cached local to the front end. This routine sends all updated data array buffers (i.e. those
marked with the “dirty bit”) to the engine.

Note that MD run() must perform the functionality of MD update() before running the simula-
tion. Judicious use of MD update() might reduce the overhead required upon calling MD run().

This call has nonblocking semantics.

Return value: Returns 0 on success or MD FAIL on error.

Errors: None for single-threaded MDAPI implementation (no functionality).

6.2.12 Running the simulation

Function: MD firststep()

Summary: Initialize the step number counter before running a simulation.

Prototype: int32 MD firststep(MD Engine *, int32 firststep);

Arguments: firststep — first step number

Description: This routine sets the step number counter to value firststep. It also has the side effect of
resetting callback processing: all callbacks start their step increments together with respect to
this initial step number value.

The step numbering defaults to start at value 0 without calling this routine.

Return value: Returns 0.

Errors: None (always succeeds).

Function: MD stepnum()

Summary: Obtain the step number counter.

Prototype: int32 MD stepnum(MD Engine *);

Return value: Returns the step number counter.

Errors: None (always succeeds).

Function: MD run()

Summary: Run a simulation, integrating the system for the specified number of steps.

Prototype: int32 MD run(MD Engine *, int32 numsteps, int32 runflags);

Arguments: numsteps — nonnegative integer

runflags — runtime flags
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Description: Calling with numsteps = 0 simply ensures that the engine is fully initialized, which might
include evaluation of the forces for the current position configuration. In this case, callbacks
are also processed if they have not already been for this step (see the callback notes that
follow).

The runflags may include MD CBFIRST bitwise ORed with any relevant engine-dependent flags.

This call has nonblocking semantics. Communication with a running simulation is performed
via pre-established callbacks.

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR CALLBACK — callback routine returned nonzero

MD ERR CBSHARE — callback shared buffer failed (access does not permit resizing of target
engine data array buffer)

MD ERR RANGE — numsteps < 0 or bug in engine resizing data arrays

MD ERR MEMALLOC — memory cannot be allocated (resizing data arrays by engine or from
callback shared buffer)

MD ERR RUN — default error state if engine run routine returns nonzero without setting the
error state

MD ERR ACCESS — indicates bug in engine (incorrect attempt to resize data arrays or acknowl-
edge data array modification)

MD ERR CHECK — consistency check failed, indicates bug in engine (either step counter is not
at projected value or callbacks were not processed at some expected step number)

The engine might also set its own error state values.

6.2.13 Establishing callbacks

The callback routines are called during the engine execution of an MD run() call. Establising callbacks
provides the means for the front end to receive data from and send data to the engine without interrupting
the simulation.

Function: MD callback()

Summary: Register a standard callback.

Prototype: int32 MD callback(MD Engine *,
int32(*cb)(void *info, MD Cbdata *data, int32 len, int32 stepnum),
void *info, MD Cbdata *data, int32 datalen, int32 stepincr);

Arguments: cb — points to a standard callback function

The callback function will receive the following arguments:

info — pointer to front end specific information
data — array of MD Cbdata to receive engine data array contents (the same data array

as below but containing current data array contents)
len — length of the MD Cbdata array
stepnum — the current step number

All of these callback function argments, except stepnum, are from the following arguments.

info — (to be passed to the callback function)
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data — array of MD Cbdata to setup call to cb

datalen — length of the MD Cbdata array

stepincr — how often to call back the cb function, counting from step number value set
using MD firststep()

Description: This routine establishes a callback to function cb providing engine data array information
through the MD Cbdata array data of length datalen along with front end specific information
pointed to through info. See the description of MD Cbdata from Sec. 6.1 for an explanation
on referencing engine data sub-arrays and front end access rights. A standard callback will be
called every stepincr steps counting from the step number value set by using MD firststep().
The standard callbacks are called right after the completion of a time integration step, so their
purpose is to log data such as atom trajectories, monitor energies or temperature, etc. A
function cb can be registered to receive multiple callbacks and even to receive different data
sets through a different MD Cbdata array on each invocation.

A callback function relinquishes any access rights to the MD Cbdata array data after returning
control. This means, for instance, performing asynchronous I/O to write trajectory files re-
quires copying the trajectory data received through the MD Cbdata array into a separate buffer
before returning control back to the MDAPI layer.

The MD Cbdata array must persist until this callback is un-registered (see MD callback undo()
description) or until cleanup through MD done().

The return value of the callback function has significance. The function should return 0 to
indicate success and nonzero (preferably MD FAIL) for an error. Upon failure of a callback,
the engine is expected to stop the simulation and return control of its run routine back to the
MDAPI layer, which in turn returns control back to the front end with an error message from
the MD run() call. So this provides the front end with a mechanism to terminate the engine.

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR MEMALLOC — memory cannot be allocated

MD ERR IDNUM — invalid data ID number for some MD Cbdata element

MD ERR ACCESS — access MD CBREAD and/or MD CBWRITE or MD CBSHARE not permitted, or
attempt to combine MD CBSHARE with other access

MD ERR RANGE — stepincr ≤ 0 or, for some MD Cbdata element, first < 0 or nelems < −1
or first + nelems > attrib.len

Function: MD callback undo()

Summary: Un-register a standard callback.

Prototype: int32 MD callback undo(MD Engine *,
int32 (*cb)(void *info, MD Cbdata *data, int32 len, int32 stepnum));

Arguments: cb — points to a standard callback function

Description: Any previously registered callbacks to routine cb are removed from the standard callback
queue. This call will succeed (but without doint anything) if there are no pointers to cb
existing in the queue. Calling with cb = NULL will remove all callbacks from the queue.

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR MEMALLOC — memory cannot be allocated
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Function: MD fcallback()

Summary: Register a force callback.

Prototype: int32 MD fcallback(MD Engine *,
int32 (*fcb)(void *, MD Cbdata *, int32 len, int32 stepnum, double frac),
void *info, MD Cbdata *data, int32 datalen);

Most of what is described for the MD callback() standard callback registration applies to force
callbacks. The differences are noted below.

Arguments: fcb — points to a force callback function

Additional argument received by callback:

frac — time step fraction, meaning that the force is being evaluated for the atom po-
sition approximation at time t = ∆t(stepnum + frac). For instance, with leapfrog
(velocity-Verlet) integration, frac = 1.0, since the force is evaluated for the new
positions, but since the step has not yet completed, stepnum retains the value for the
current step. Depending on the integrator used, frac could actually be greater than
1 or less than 0.

Note that the stepincr argument is no longer needed since force callbacks are processed on
every force evaluation.

Description: Force callbacks are the intended mechanism for the front end to supply external forces to
the simulation without having to know details about the particular integrator being used to
propagate the system. The main difference between force callbacks and standard callbacks
is when the callbacks are processed. Standard callbacks are processed at the beginning of a
new step being reached. Force callbacks are processed during each force evaluation, which,
depending on the integration method, often occurs in the middle of a step.

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR MEMALLOC — memory cannot be allocated

MD ERR IDNUM — invalid data ID number for some MD Cbdata element

MD ERR ACCESS — access MD FCBREAD and/or MD FCBWRITE or MD FCBSHARE not permitted, or
attempt to combine MD FCBSHARE with other access

MD ERR RANGE — stepincr ≤ 0 or, for some MD Cbdata element, first < 0 or nelems < −1
or first + nelems > attrib.len

Function: MD fcallback undo()

Summary: Un-register a force callback.

Prototype: int32 MD fcallback undo(MD Engine *,
int32 (*fcb)(void *, MD Cbdata *, int32 len, int32 stepnum, double frac));

Arguments: fcb — points to a force callback function

Description: Any previously registered callbacks to routine fcb are removed from the force callback queue.
This call will succeed (but without doing anything) if there are no pointers to fcb in the queue.
Calling with fcb = NULL will remove all force callbacks from queue.

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR MEMALLOC — memory cannot be allocated
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Function: MD msgcallback()

Summary: Register a message callback function.

Prototype: int32 MD msgcallback(MD Engine *,
int32 (*msgcb)(void *info, const char *msg, int32 stepnum),
void *info);

Arguments: msgcb — points to the message callback function

The message callback function receives the following arguments:

info — pointer to front end specific information
msg — the text message, a nil-terminated string
stepnum — the current step number

info — (to be passed to the message calback function)

Description: This routine establishes a function to receive message callbacks. This is simply a mechanism
for the engine to provide the front end with a status message (as a nil-terminated string)
whenever it wants to document an event. The return value from a message callback function
has the same significance as that from a force or standard callback. However, unlike the other
callback types, message callback functions are not guaranteed to be called by the engine.

Although for consistency with the other callback types it is possible to register multiple message
callbacks, this feature does not seem to serve much purpose in practice since they will all receive
exactly the same message.

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR MEMALLOC — memory cannot be allocated

Function: MD msgcallback undo()

Summary: Un-register a message callback function.

Prototype: int32 MD msgcallback undo(MD Engine *,
int32 (*msgcb)(void *info, const char *msg, int32 stepnum));

Arguments: msgcb — points to a message callback function

Description: Any previously registered callbacks to routine msgcb are removed from the message callback
queue. This call will succeed (but without doing anything) if there are no pointers to msgcb
in the queue. Calling with msgcb = NULL will remove all callbacks from the message callback
queue.

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR MEMALLOC — memory cannot be allocated

6.2.14 Using engine-defined types

Function: MD type()

Summary: Obtain the type number from its name.

Prototype: int32 MD type(MD Engine *, const char *name);
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Arguments: name — type name, nil-terminated string

Description: Given the nil-terminated string name of a data type, return its type number. Case sesitive
string matching is performed. Note that different engines might define types of the same name,
but this does not mean that they will be assigned the same type identification number.

Return value: Returns the type identification number (positive int32) corresponding to the recognized name
or MD FAIL if no match is found.

Errors: MD ERR NAME — name does not match any defined data types

Function: MD type name()

Summary: Obtain the type name from its number.

Prototype: const char *MD type name(MD Engine *, int32 type);

Arguments: type — type identification number

Description: Given the type identification number, return the corresponding type name. This routine is the
inverse of MD type().

Return value: Returns the nil-terminated string name or NULL on error.

Errors: MD ERR TYPENUM — invalid type number

Function: MD type namelist()

Summary: Obtain the list of type names.

Prototype: const char **MD type type namelist(MD Engine *, int32 listlen);

Arguments: listlen — points to an integer variable

Description: The list of names of all defined data types is returned, with the length of the list returned
through the listlen pointer.

Return value: Returns a pointer to an array of nil-terminated strings and modifies the value of the int32
variable pointed to by listlen.

Errors: None (always succeeds).

Function: MD type memberlist()

Summary: Obtain the member list for the defined type.

Prototype: const MD Member *MD type memberlist(MD Engine *, int32 type, int32 *listlen);

Arguments: type — type identification number

listlen — points to an integer variable

Description: Given the type number, return the array of MD Member for that type, with the array length
returned through listlen. The MD Member array provides information on the members of the
defined type (i.e. think C struct members). See the description of MD Member in Sec. 6.1.
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Return value: Returns a pointer to an array of MD Member and modifies the value of the int32 varialbe
pointed to by listlen. NULL is returned if an error occurs.

Errors: MD ERR TYPENUM — invalid type number

Function: MD type member()

Summary: Obtain the address of a type member.

Prototype: void *MD type member(MD Engine *, int32 type, const void *obj,
const char *member name, MD Member *pmember);

Arguments: type — type identification number

obj — points to an object instance of the indicated type

member name — nil-terminated string name of member from this type

pmember — either points to a variable of MD Member or is NULL

Description: Given the member named member name along with the object instance obj of the indicated
type, a pointer to that member is returned. Case sensitive string matching is performed on
the member name. The pmember field, if non-NULL, receives the MD Member structure for the
named member.

The first time this routine is called for a particular type, the MDAPI layer builds a search
table of the member names and their address offsets from the start of the type. Subsequent
calls on that type are fast, entailing a quick lookup in the search table.

Return value: Returns a pointer to the member in obj or NULL on error.

Errors: MD ERR MEMALLOC — memory cannot be allocated

MD ERR TYPENUM — invalid type number

MD ERR NAME — name does not match any members of specified type

MD ERR NEWTYPE — indicates a bug in the engine (occurs if more than one member has the
same name, really indicating an error from engine initialization that was not discovered
until this routine)

6.2.15 Handling errors

Function: MD errnum()

Summary: Obtain the error number.

Prototype: int32 MD errnum(MD Engine *);

Return value: Returns the (nonzero) error number if an error condition has been set or 0 if there is no error.

Function: MD errmsg()

Summary: Obtain the error message.

Prototype: const char *MD errmsg(MD Engine *);
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Return value: Returns the error message description (nil-terminated string) for the current error condition.

Function: MD reset()

Summary: Reset the error state.

Prototype: int32 MD reset(MD Engine *);

Description: Attempts to reset the current error state to MD ERR NONE. The call will succeed if the current
error state is recoverable, in which case subsequent calls to MD errnum() will return 0. The
call will fail if the current error state is considered fatal, in which case the front end should
terminate use of this engine object by calling MD done().

Return value: Returns 0 on success, resetting the error state, or MD FAIL for an unrecoverable error.

Function: MD engine name()

Summary: Obtain the name of the engine.

Prototype: const char *MD engine name(MD Engine *);

Return value: Returns the engine name, as specified in the MD init() call. Intended for diagnostic purposes.

6.3 Engine Interface Specification

The routines presented here provide the engine interface to the MDAPI. The definitions and prototypes
are all found in the mdengine.h header file. The engine receives a pointer to MD Front as its handle to
the front end to be used in all of the routines. It is recommended that the engine allocate its state on
the heap so that its code is reentrant. The engine should have its state accessible through a single pointer
stored within MD Front, originally initialized by calling MD setup engine(), then accessed later by calling
MD engine data(). The engine establishes data arrays to be accessed by the front end, each of which is an
instance of MD Engdata that is contained as part of the engine state.

The engine has three entry points from the MDAPI layer:

1. the initialization routine, called through MD init();

2. the run routine, called through MD run();

3. the cleanup routine, called through MD done().

Each of these three code sections has available to it a particular set of engine API routines; the function
definitions that follow are gathered to reflect these categories.

6.3.1 Objects

Type: MD Front

Summary: The front end object.
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Definition: typedef MD Interface MD Front;

Description: This is just the MD Interface from Sec. 6.1 renamed to appear as the front end object. The
engine receives into its initialization, cleanup, and run routines, a pointer to MD Front as the
handle to the front end. All of the engine API calls operate on the front end object, requiring
a pointer to the object passed as the first argument, analogous to the C++ this pointer.

Type: MD Engdata

Summary: The engine data array object.

Definition: typedef struct MD Engdata tag {
void *buf;
MD Attrib attrib;
/* the rest is opaque to engine */

} MD Engdata;

Description: Each engine data array, meaning an array that is accessible to the front end, is contained
within an MD Engdata object. The three routines that establish an engine data array, either
MD engdata() or one of the alternatives, return a pointer to MD Engdata. The data buffer is
available througn buf, and attrib provides the length of the array (through attrib.len).

Generally, the engine should not change the value of the buf pointer. If the engine needs to
resize the data array, the array should be established using some combination of the MD ESETLEN
and MD ESETMAX access flags, permitting MD engdata setlen(), MD engdata setmax(), and/or
MD engdata resize() calls by the engine to control the array length and allocation.

Type: MD Callback

Summary: The callback object.

Definition: typedef struct MD Callback tag {
MD Cbdata *cbarg;
int32 cbarglen;
int32 stepincr;
int32 nextstepnum;
/* the rest is opaque to engine */

} MD Callback;

Description: The MD Callback object stores data needed for invoking a callback. One MD Callback object
is allocated for each standard and force callback registered by the front end. The MDAPI layer
keeps one array of MD Callback for standard callbacks and another array of MD Callback for
force callbacks. The engine can obtain either array in order to discover exactly what data
is needed by the front end and when. The cbarg member provides the array of MD Cbdata,
describing each sub-array of each engine data array accessed by the callback routine (see
Sec. 6.1 for details), with the length of the MD Cbdata array given by member cbarglen. For a
standard callback, the stepincr member indicates how often the callback is to be processed,
and the nextstepnum member provides the particular step number at which the callback will
be invoked.
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Calls during engine initialization

The engine initialization routine, with prototype

int32 engine init(MD Front *f);

is called once from the front end API MD init() call, where f points to the front end object. The name
engine init used here is intended as a descriptive placeholder for whatever name is to be used by the engine.
The front end either passes this function pointer to MD init() or else an advanced implementation of MDAPI
(featuring dynamic loading of engines) specifies a way of gaining the initialization routine name from the
engine name string.

The main goal of engine initialization is to setup all data array communication that will take place between
front end and engine. Initialization must allocate the engine data structures, define any new types and
error conditions, establish the engine data array MD Engdata objects, and setup the engine run routine. The
following definitions present the engine API routines intended to be used during initialization. Any API
calls here that fail are fatal, so the engine should return MD FAIL immediately. The cleanup routine will still
be called, so the freeing of memory allocations can be delayed until then. Note that it is also possible to call
certain other routines, such as the data array resizing routines.

6.3.2 Setup engine handle

Function: MD setup engine()

Summary: Setup a handle for the engine.

Prototype: int32 MD setup engine(MD Front *, void *engine);

Arguments: engine — points to main engine data structure

Description: This routine must be called before any other engine API routines, because it checks the con-
sistency of the MDAPI version number. The pointer value passed as engine will later be
returned by MD engine data() as the handle to the main engine data structure.

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR VERSION — inconsistent version number

6.3.3 Establising data arrays

Function: MD engdata()

Summary: Create an engine data array with memory managed by MDAPI layer.

Prototype: MD Engdata *MD engdata(MD Front *, const char *name, int32 type,
int32 access);

Arguments: name — nil-terminated string identifier for this data array

type — type number of data elements

access — bit field indicating front end access rights to data array
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Description: This routine is the typical way for the engine to setup a data array. The MDAPI performs
memory management for this array, initially with attrib.len = attrib.max = 0. The
name string must persist until engine cleanup. The type number should either be one of the
predefined data type number constants from Sec. 6.1 or some value returned by a successful
call to MD new type() for an engine-defined data type. The access argument should be some
bitwise ORing of the engine access flag constants from Sec. 6.1. Depending on these access
flag values, the MDAPI may also enable the MD SHARE flag for the data array. Specifically,
the MDAPI enables MD SHARE if MD WRITE and MD RESIZE are enabled and if MD NOSHARE and
MD ERESIZE are disabled. Note that this is the only constructor for MD Engdata that will permit
MD SHARE access.

Return value: Return value is pointer to the MD Engdata object held by the MDAPI layer or NULL on error.

Errors: MD ERR NEWDATA — cannot create new engine data (due to incorrect attributes or name con-
flict with another engine data array)

MD ERR MEMALLOC — memory cannot be allocated

Examples: This routine applies to most engine data arrays. Length is unknown a priori, instead deter-
mined by front end input files. In this case, the front end is responsible for setting the length
of data arrays like atom, bond, angle, etc., based on size of the molecular system, with the
memory allocation all managed by the MDAPI layer.

Function: MD engdata buffer()

Summary: Create an engine data array with a preallocated buffer supplied by the engine.

Prototype: MD Engdata *MD engdata buffer(MD Front *, const char *name, MD Attrib attrib,
void *buf);

Arguments: name — nil-terminated string identifier for this data array

attrib — attribute for data array

buf — points to the memory buffer

Description: This routine lets the engine establish a data array with a static or preallocated buffer. The
name string and buffer space must persist until engine cleanup. The attrib argument of type
MD Attrib (described in Sec. 6.1) not only provides the type number and access flags, but also
should indicate the maximum allocation of the buffer and usable array length. The buffer
must be large enough to accomodate attrib.max. The attrib.max value will remain fixed,
so that the MD SETMAX and MD ESETMAX flags are disabled.

Make sure that the static buffers accessed through MD Engdata do not overlap or reference each
other. Although it would work whenever the front end and engine share the same memory
address space, it can produce unpredictable results whenever the front end and engine are
communicating remotely.

Return value: Return value is pointer to the MD Engdata object held by the MDAPI layer or NULL on error.

Errors: MD ERR NEWDATA — cannot create new engine data (due to incorrect attributes or name con-
flict with another engine data array)

MD ERR MEMALLOC — memory cannot be allocated

Examples: The engine can permit access to a scalar quantity (1-element array) having fixed attrib.len =
attrib.max = 1.
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Function: MD engdata manage()

Summary: Create an engine data array with buffer space managed by engine.

Prototype: MD Engdata *MD engdata manage(MD Front *, const char *name, MD Attrib attrib,
void *buf, void *(*realloc)(void *ptr, size t size));

Arguments: name — nil-terminated string identifier for this data array

attrib — attribute for data array

buf — points to initial memory buffer

realloc — routine to be called by MDAPI to manage resizing for this buffer

Description: This routine permits the engine to control the method of memory management of the buffer
allocation. The name string should persist until engine cleanup. The buf should either point to
buffer space preallocated using the provided realloc routine or should be NULL. The attrib
argument of type MD Attrib (described in Sec. 6.1) not only provides the type number and
access flags, but also should indicate the maximum allocation of buf and the inital usable array
length. The realloc routine must have semantics identical with the realloc() function from
the C standard library. This means that a call to realloc on ptr with size = 0 frees the
memory allocation. The engine cleanup routine might want to call MD free data() to force
data array buffer memory to be freed before the main engine data structure, in the event that
the supplied realloc routine depends on the engine state.

Return value: Return value is pointer to the MD Engdata object held by the MDAPI layer or NULL on error.

Errors: MD ERR NEWDATA — cannot create new engine data (due to incorrect attributes or name con-
flict with another engine data array)

MD ERR MEMALLOC — memory cannot be allocated

Examples: One way of computing the modified Hamiltonian involves the engine keeping an array of
previously computed position and velocity buffers needed for centered differencing. Doing this
allows the engine to switch the MD Engdata buf pointer to point to any of the buffers. When
memory is freed, the MDAPI calls the same memory management routine to free the “current”
buffer as does the engine to free the other buffers.

6.3.4 Aliasing data arrays

Function: MD engdata alias()

Summary: Setup an alternative name for an engine data array.

Prototype: int32 MD engdata alias(MD Front *, const char *name, MD Engdata *e);

Arguments: name — nil-terminated string identifier to alias the indicated engine data array

e — pointer to previously established MD Engdata object

Description: The engine can set an alternative name (alias) for an engine data array. This new name can
be used through the front end API routines the same as the original name. The name string
should persist until engine cleanup.

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR NEWDATA — cannot create alias (due to name conflict, string name has already been
used for some other engine data array)
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MD ERR MEMALLOC — memory cannot be allocated

Examples: NAMD has its own names for simulation parameters. If these conflict with the MDAPI naming
conventions, use both names to avoid breaking compatibility between old NAMD “config” files
and a redesigned NAMD engine.

6.3.5 Defining new types

Function: MD new type()

Summary: Engine defines a new data type.

Prototype: int32 MD new type(MD Front *, const char *name, const MD Member *member,
int32 memberlen, int32 nbytes);

Arguments: name — nil-terminated string identifier for the type

member — array of MD Member comprising the members of the type

memberlen — length of the array, number of elements

nbytes — size of the new type in bytes

Description: The MDAPI layer internally calls this routine on all of its predefined data types (see Chap. 2)
before invoking the engine initialization routine. The member array describes each member of
the new type (i.e. C struct), with MD Member described in Sec. 6.1. The name string and the
member array and its elements must persist until engine cleanup. For the value of nbytes, just
use the C sizeof operator on the actual type.

A new type can be constructed using member elements of any previously defined type. The only
caveat is that members must be positioned so that 4-byte numeric quantities (i.e. int32, float,
MD Fvec) start on 4-byte boundaries and 8-byte numeric quantities (i.e. double, MD Dvec) start
on 8-byte boundaries, counting from 0.

Return value: Return value is the new (nonzero) type number on success or MD FAIL on error.

Errors: MD ERR NEWTYPE — cannot create new type (due to invalid type numbers in member list,
misaligned numeric types, or disagreement between nbytes and internally computed size)

MD ERR MEMALLOC — memory cannot be allocated

Examples: The following example illustrates the operation of the function for a predefined data type.

typedef struct MD_BondPrm_tag {
double k;
double r0;
MD_Name type[2];

} MD_BondPrm;

const MD_Member bondprm_member[] =
{ { MD_DOUBLE, 1, "k" }, { MD_DOUBLE, 1, "r0" }, { MD_NAME, 2, "type" } };

bondprm_type = MD_new_type(frnt, bondprm_member,
sizeof(bondprm_member)/sizeof(bondprm_member[0]), sizeof(MD_BondPrm));
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After doing this, MD BondPrm can now be used as a member of newly defined types. Note that
the type number constants defined in mdtypes.h are each equal to the return values from the
respective calls to MD new type().

Two recommended types for the engine to create are Param and Result. The members of
Param include the engine simulation parameters, and the members of Result include the
scalar quantities computed by the engine during the simulation. See Chap. 3 for more details.

6.3.6 Defining new errors

Function: MD new error()

Summary: Engine defines a new error condition.

Prototype: int32 MD new error(MD Front *, const char *errmsg, int32 isfatal);

Arguments: errmsg — nil-terminated string of error description

isfatal — zero indicates not fatal, nonzero indicates fatal

Description: This routine allows the engine to define its own errors to be reported from the run routine.
Fatal errors are usually (but not necessarily) used for system-related errors that appear to be
unrecoverable. Error values are used in calls to MD error(). The errmsg string must persist
until engine cleanup.

Return value: Returns new (nonzero) error number on success or MD FAIL on error.

Errors: MD ERR MEMALLOC — memory cannot be allocated

Examples: A couple of error condition definitions might be as follows.

too_hot = MD_new_error(frnt, "system temperature too hot", 0);
unstable = MD_new_error(frnt, "simulation is unstable", 1);
...

return MD_error(frnt, unstable);

6.3.7 Setup the run routine

Function: MD setup run()

Summary: Sets up the engine run routine.

Prototype: int32 MD setup run(MD Front *,
int32 (*run)(MD Front *f, int32 numsteps, int32 flags));

Arguments: run — points to the run routine to be called by MD run()

The run routine will receive the following arguments:

f — pointer to the MD Front front end object
numsteps — number of time steps to integrate system
flags — status flags
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Description: The engine supplied run routine is the entry point into the compute-instensive portion of the
MD code that is responsible for evaluating the force field and propagating the molecular system
for the indicated number of steps.

The flags argument is a bit field status indicator. The MD UPDATE flag will be set if any array
with MD NOTIFY access has been modified by the front end. The engine should take appropriate
action on any modified arrays, then call MD engdata ackmod() for each such array. The low
order bits (i.e. 0x0000FFFF) of flags are reserved to the engine to define its own status flags.

The run routine is responsible for initiating the processing of callbacks. Message callbacks are
solely for the benefit of the engine as a way to communicate text messages back to the front
end. Force callbacks (if any) must be processed whenever the force is evaluated. Standard
callbacks (if any) are processed after the completion of each step and also once before taking
any steps. Any data array buffers that were granted either standard or force callback access
might be involved in callback processing, so the engine should not modify these buffers while
callback processing is active.

If the force is stale when the run routine is invoked, the run routine should first evaluate the
force (which might involve a force callback).

After the completion of each step, before processing standard callbacks, the run routine should
call MD incrstep() to update the internal step counter that the MDAPI layer keeps. The
value of this counter is avaliable through MD stepnum().

Return value: Returns 0.

Errors: None (always succeeds).

Calls during engine run routine

The engine run routine is called one or more times through the front end API MD run() call. The run routine
performs the integration and necessary force evaluations for the system. Its prototype is

int32 engine run(MD Front *f, int32 numsteps, int32 flags);

as discussed in the MD setup run() routine. The name engine run is intended as a placeholder for whatever
name the engine chooses for this routine.

The main API calls here concern the processing of callbacks. Although the specific callbacks to the front
end are managed by the MDAPI layer, the engine is required to initiate them. There are three varieties of
callbacks: standard callbacks, force callbacks, and message callbacks. The standard callbacks need to be
processed (when so indicated) at the end of an integration step. The force callbacks (for the introduction
of external forces) need to be processed during any evaluation of the force to obtain the total forces. The
message callback is intended for sending arbitrary text strings that report the engine status to the front end.
These three callback types can all be processed in parallel, with nonblocking calling semantics. The only
restrictions are that you cannot initiate another callback of the same variety before the first callback of that
variety has completed.

If the forces are stale (or have not yet been computed) when the run routine is first called, then immediately
after finishing any remaining simulation initialization, the engine is expected to perform an initial evaluation
of the forces, then check for a standard callback on the zeroth step. Also, upon completion of an integration
step, the engine is expected to increment its step counter. (This is the mechanism by which the MDAPI
layer synchronizes the processing of callbacks.)
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The following definitions present the engine API routines intended while running the simulation. Note that
the engine should not establish new data arrays, define new types, or define new error conditions during the
run routine.

6.3.8 Obtaining engine handle

Function: MD engine data()

Summary: Obtain the pointer to the main engine data structure.

Prototype: void *MD engine data(MD Front *);

Return value: Returns the pointer to the main engine data structure initially set by MD setup engine().

Errors: None (always succeeds).

6.3.9 Controlling step number counter

Function: MD incrstep()

Summary: Increment the internal step counter kept by the MDAPI layer.

Prototype: int32 MD incrstep(MD Front *);

Description: This routine should be called once after the completion of each step, before processing standard
callbacks.

Return value: Returns 0.

Errors: None (always succeeds).

Function: MD stepnum()

Summary: Obtain the step number counter.

Prototype: int32 MD stepnum(MD Engine *);

Return value: Returns the step number counter.

Errors: None (always succeeds).

6.3.10 Resizing data arrays

Function: MD engdata setlen()

Summary: Set the length attribute for an engine data array.

Prototype: int32 MD engdata setlen(MD Front *, MD Engdata *e, int32 newlen);

Arguments: e — pointer to previously established MD Engdata object

newlen — new length value
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Description: This call sets the length for the specified engine data array, indicating the number of elements
used in the array. The array must permit MD ESETLEN access. If newlen > attrib.max with
MD ESETMAX access also permitted, then the buffer allocation is extended to attrib.max =
attrib.len = newlen.

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR ACCESS — access MD ESETLEN is not permitted
MD ERR MEMALLOC — memory cannot be allocated
MD ERR RANGE — newlen < 0 or newlen > attrib.max without MD ESETMAX access permission

Function: MD engdata setmax()

Summary: Set the maximum allocation attribute for an engine data array.

Prototype: int32 MD engdata setmax(MD Front *, MD Engdata *e, int32 newmax);

Arguments: e — pointer to previously established MD Engdata object
newmax — new maximum array allocation value

Description: This call sets the maximum allocation for the specified engine data array, indicating the max-
imum number of elements that can be stored in the memory buffer. The array must permit
MD ESETMAX access. If newmax < attrib.len with MD ESETLEN access also permitted, then the
buffer allocation is truncated to attrib.len = attrib.max = newmax.

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR ACCESS — access MD ESETMAX is not permitted
MD ERR MEMALLOC — memory cannot be allocated
MD ERR RANGE — newmax < 0 or newmax < attrib.len without MD ESETLEN access permission

Function: MD engdata resize()

Summary: Set both the length and maximum allocation attributes for an engine data array.

Prototype: int32 MD engdata resize(MD Front *, MD Engdata *e, int32 newlen, int32 newmax);

Arguments: e — pointer to previously established MD Engdata object
newlen — new length value
newmax — new maximum array allocation value

Description: This call sets both the length and maximum allocation for the specified engine data array.
The maximum allocation indicates the number of elements that can be stored in the memory
buffer. The length indicates the number of elements used in the array. It is necessary that
0 ≤ newlen ≤ newmax. The array must permit MD ERESIZE access (which is the same as
both MD ESETLEN and MD ESETMAX access). If newlen > attrib.max then the buffer allocation
is extended to accomodate. Similarly, if newmax < attrib.len then the buffer allocation is
truncated.

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR ACCESS — access MD ERESIZE is not permitted
MD ERR MEMALLOC — memory cannot be allocated
MD ERR RANGE — newlen < 0 or newmax < 0 or newmax < newlen
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6.3.11 Acknowledging data array modification

Function: MD engdata ackmod()

Summary: Acknowledge the front end modification of an engine data array.

Prototype: int32 MD engdata ackmod(MD Front *, MD Engdata *e);

Arguments: e — pointer to previously established MD Engdata object

Description: This call clears the MD MODIFY access flag, acknowledging that the front end modified the
data array. The engine should acknowledge all such MD Engdata objects for which it had set
MD NOTIFY access.

Return value: Returns 0 on success or MD FAIL on error.

Errors: MD ERR ACCESS — status flag MD MODIFY was not set for indicated MD Engdata object

6.3.12 Processing callbacks

Callback processing has nonblocking calling semantics and allows processing of all three types of callbacks
simultaneously. The only requirement is that a new set of callbacks of a given type cannot be proceesed until
the first set of callbacks of that type has completed. Data arrays being communicated through a callback
should not be altered or accessed by the engine until after the processing of callbacks is complete.

Function: MD ready callback()

Summary: Check if any standard callbacks are ready to be processed.

Prototype: int32 MD ready callback(MD Front *);

Description: This routine enables the engine to perform any necessary internal manipulation of data before
standard callbacks are processed. Since standard callbacks are setup to be processed after
some number of steps, it is possible for this routine to sometimes return true and other times
return false.

Return value: Returns true (nonzero) if a standard callback is ready to be processed for the current step
number count. Otherwise returns false (zero).

Errors: None (always succeeds).

Function: MD exec callback()

Summary: Process the standard callbacks.

Prototype: int32 MD exec callback(MD Front *);

Description: Standard callback processing should be performed after each increment of the step counter
(call to MD incrstep()), where the front end has specified the step number increment for each
callback that has been registered. The MD ready callback() can first be used to determine if
there are standard callbacks to be processed on this step number. This routine has nonblocking
semantics requiring one or more calls to MD test callback() or a call to MD wait callback()
to synchronize. Data arrays being communicated during callback processing should not be
altered or accessed by the engine until the processing of callbacks is complete.
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Return value: Returns 0 on success or MD FAIL on error. If the call fails, the engine should immediately
return MD FAIL back to the MDAPI layer.

Errors: MD ERR CALLBACK — callback routine returned nonzero

MD ERR CBSHARE — callback shared buffer failed (access does not permit resizing of target
engine data array buffer)

MD ERR CHECK — consistency check failed, indicates bug in engine (calback not processed at
expected step number)

MD ERR MEMALLOC — memory cannot be allocated (resizing data arrays from callback shared
buffer)

Function: MD test callback()

Summary: Tests whether standard callback processing has finished.

Prototype: int32 MD test callback(MD Front *);

Description: This call returns immediately, indicating whether or not the most recent MD exec callback()
call to process callbacks has completed.

Return value: Returns true (positive value) if the MD exec callback() has successfully completed or false
(zero) if the call has not yet completed. Returns MD FAIL if the call has completed but an error
occurred.

Errors: Same as for MD exec callback().

Function: MD wait callback()

Summary: Wait for standard callback processing to finish.

Prototype: int32 MD wait callback(MD Front *);

Description: This call blocks to wait for the most recent MD exec callback() call has completed, synchro-
nizing the engine after the MDAPI callback processing.

Return value: Returns 0 on success or MD FAIL on error.

Errors: Same as for MD exec callback().

Function: MD ready fcallback()

Summary: Check if any force callbacks are ready to be processed.

Prototype: int32 MD ready callback(MD Front *);

Description: This routine enables the engine to perform any necessary internal manipulation of data before
force callbacks are processed. Since force callbacks must be processed for each force evaluation,
this routine simply indicates whether any force callbacks have been registered by the front end.
This means that this routine need only be called once for any invocation of the engine run
routine.

Return value: Returns true (nonzero) if any force callbacks are registered. Otherwise returns false (zero).
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Errors: None (always succeeds).

Function: MD exec fcallback()

Summary: Process the force callbacks.

Prototype: int32 MD exec callback(MD Front *, double timestepfrac);

Arguments: timestepfrac — adjustment indicating the simulation time corresponding to the position
approximation

Description: Force callback processing should be performed for each force evaluation. If the integration
method requires multiple force evaluations per step, then force callback processing will also
need to be performed multiple times per step. The MD ready fcallback() routine can first be
used to determine if there are any force callbacks registered. This routine has nonblocking se-
mantics requiring one or more calls to MD test fcallback() or a call to MD wait fcallback()
to synchronize. Data arrays being communicated during callback processing should not be al-
tered or accessed by the engine until the processing of callbacks is complete.

The timestepfrac argument indicates the fractional adjustment to the simulation time cor-
responding to the position approximation. Letting s be the step number counter and ∆t
be the time step, then the position approximation for this force evaluation is for time t =
s∆t + timestepfrac. Note that the value(s) of timestepfrac depend(s) on the integrator
being used by the engine. For instance, the leapfrog/Verlet integrator would always have
timestepfrac = 1.0 since the force is evaluated using the updated positions, but the step
number counter has not been incremented. For integration methods that require multiple
force evaluations per step, it is possible for timestepfrac to be less than 0 or greater than 1.

Return value: Returns 0 on success or MD FAIL on error. If the call fails, the engine should immediately
return MD FAIL back to the MDAPI layer.

Errors: MD ERR CALLBACK — callback routine returned nonzero

MD ERR CBSHARE — callback shared buffer failed (access does not permit resizing of target
engine data array buffer)

MD ERR MEMALLOC — memory cannot be allocated (resizing data arrays from callback shared
buffer)

Function: MD test fcallback()

Summary: Tests whether force callback processing has finished.

Prototype: int32 MD test fcallback(MD Front *);

Description: This call returns immediately, indicating whether or not the most recent MD exec fcallback()
call to process callbacks has completed.

Return value: Returns true (positive value) if the MD exec fcallback() has successfully completed or false
(zero) if the call has not yet completed. Returns MD FAIL if the call has completed but an error
occurred.

Errors: Same as for MD exec fcallback().

Function: MD wait fcallback()
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Summary: Wait for force callback processing to finish.

Prototype: int32 MD wait fcallback(MD Front *);

Description: This call blocks to wait for the most recent MD exec fcallback() call has completed, synchro-
nizing the engine after the MDAPI callback processing.

Return value: Returns 0 on success or MD FAIL on error.

Errors: Same as for MD exec fcallback().

Function: MD ready msgcallback()

Summary: Check if any message callbacks are ready to be processed.

Prototype: int32 MD ready msgcallback(MD Front *);

Description: This routine indicates if any message callbacks are registered, since it is left to the discretion
of the engine whether message callbacks will ever be processed. This means that this routine
need only be called once for any invocation of the engine run routine.

Return value: Returns true (nonzero) if any message callbacks are registered. Otherwise returns false (zero).

Errors: None (always succeeds).

Function: MD exec msgcallback()

Summary: Process the message callbacks.

Prototype: int32 MD exec msgcallback(MD Front *, const char *msg);

Arguments: msg — nil-terminated string message

Description: A message callback permits the engine to send a status message, in the form of a text string, to
the front end, perhaps to be printed to stdout or saved in a log file. MD ready msgcallback()
routine can first be used to determine if there are message callbacks registered. This routine
has nonblocking semantics requiring one or more calls to MD test msgcallback() or a call
MD wait msgcallback() to synchronize. The msg string should persist until completion of the
message callback processing.

Return value: Returns 0 on success or MD FAIL on error. If the call fails, the engine should immediately
return MD FAIL back to the MDAPI layer.

Errors: MD ERR CALLBACK — callback routine returned nonzero

Function: MD test msgcallback()

Summary: Tests whether message callback processing has finished.

Prototype: int32 MD test msgcallback(MD Front *);

Description: This call returns immediately, indicating if the most recent MD exec msgcallback() call to
process callbacks has completed.
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Return value: Returns true (positive value) if the MD exec msgcallback() has successfully completed or false
(zero) if the call has not yet completed. Returns MD FAIL if the call has completed but an error
occurred.

Errors: Same as for MD exec msgcallback().

Function: MD wait msgcallback()

Summary: Wait for message callback processing to finish.

Prototype: int32 MD wait msgcallback(MD Front *);

Description: This call blocks to wait for the most recent MD exec msgcallback() call has completed, syn-
chronizing the engine after the MDAPI callback processing.

Return value: Returns 0 on success or MD FAIL on error.

Errors: Same as for MD exec msgcallback().

6.3.13 Obtaining callback data requirements

Function: MD callback list()

Summary: Obtain the list of standard callbacks.

Prototype: cosnt MD Callback **MD callback list(MD Front *, int32 *listlen);

Arguments: listlen — points to an integer variable to receive list length

Description: This call makes available the list of standard callbacks registered by the front end. Inspection
allows the engine to determine the data array requirements for callback processing.

Return value: Returns a pointer to the array of MD Callback or NULL if no standard callbacks are registered.

Errors: None (always succeeds).

Function: MD fcallback list()

Summary: Obtain the list of force callbacks.

Prototype: cosnt MD Callback **MD fcallback list(MD Front *, int32 *listlen);

Arguments: listlen — points to an integer variable to receive list length

Description: This call makes available the list of force callbacks registered by the front end. Inspection
allows the engine to determine the data array requirements for callback processing.

Return value: Returns a pointer to the array of MD Callback or NULL if no force callbacks are registered.

Errors: None (always succeeds).
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6.3.14 Reporting errors

Function: MD error()

Summary: Set an error condition.

Prototype: int32 MD error(MD Front *, int32 errnum);

Arguments: errnum — error number

Description: This call reports to the MDAPI layer an error condition. The errnum argument should be either
a predefined error number constant (listed in Sec. 6.1) or an error number value returned from
MD new error().

Note that in the case of cascading failures, MD error() should be called only once before
control is returned back to MDAPI layer. The MDAPI layer also uses this routine for its error
reporting.

Return value: Returns MD FAIL, so can be used as the return from a failed engine function.

Function: MD errnum()

Summary: Obtain the error number.

Prototype: int32 MD errnum(MD Engine *);

Return value: Returns the (nonzero) error number if an error condition has been set or 0 if there is no error.

Function: MD errmsg()

Summary: Obtain the error message.

Prototype: const char *MD errmsg(MD Engine *);

Return value: Returns the error message description (nil-terminated string) for the current error condition.

Calls during engine cleanup

The engine cleanup routine is called once through the front end API MD done() call. The prototype of the
cleanup routine is

void engine done(MD Front *);

The engine will need to first call MD engine data() to obtain a handle to its main data structure.

The primary responsibility for cleanup is for the engine to free memory that it allocated for itself. The only
exception is with MD Engdata objects created by MD engdata manage(), which might have been initially
allocated by the engine but will be freed by MDAPI, through a call to the provided realloc routine.
Typical behavior is for MDAPI layer to first call the engine cleanup routine, then to free all of its data
allocations. However, the engine can override this behavior through the MD free data() routine defined
next. Most likely the last thing that the engine cleanup routine does is to free its main data structure,
essentially wiping its state.
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6.3.15 Freeing data array allocations

Function: MD free data()

Summary: Free engine data array buffer allocations.

Prototype: void MD free data(MD Front *);

Description: Calling this from the engine cleanup routine will force the MDAPI layer to immediately free
the MD Engdata array buffer memory allocations. Otherwise, the MD Engdata buffers are freed
after the engine cleanup routine has completed.

Examples: Suppose the memory management for the realloc routine passed to MD engdata manage()
depends on the engine state. Any such data buffers would need to be freed before the engine
cleanup routine wipes the engine state.


