Simulation of Self-Organizing Neural Nets: A Comparison

between a Transputer Ring and a Connection Machine CM-2

K. Obermayer, H. Heller, H. Ritter and K. Schulten
Beckman-Institute for Advanced Science and Technology,
University of Illinois at Urbana-Champaign,

405 N. Matthews Av., Urbana, IL 61801

Abstract:

In this contribution we describe parallel algorithms implementing Kohonen’s ”Self-organizing
Feature Maps” on a Transputer systolic ring and on a Connection Machine CM-2. We imple-
mented Kohonen’s algorithm with the goal to study its ability for biological modelling and to
explain the formation and the adaptive properties of topographic feature maps in the CNS of
higher animals. Therefore our attention lies on networks with a high number of units receiving
pattern vectors from of a high dimensional input space.

In the following we present benchmark studies (i) to measure the performance of the al-
gorithm as a function of important network parameters on both systems, (ii) to compare the
performance on the MIMD - Transputer systolic ring (”coarse-grained” implementation) with
the performance on the SIMD - Connection Machine CM-2 ("fine-grained” implementation),
and (iii) to measure the speedup of the algorithm depending on the number of physical proces-
sors used. The results are supplemented by measurements of communication times between the
processors to allow predictions for related algorithms involving higher communication between
units. A short overview over results obtained with both parallel machines is given.

1. Introduction:

The development of computer technology and computer science in the last two decades
has led not only to a variety of fast and powerful machines, but also to a high flexibility
in their use. The concept of the computer as a universal machine, and the fact that the
ability to perform a certain task could be transferred from one machine to another by
porting the code, supported the notion that the ability to perform a certain task resides in
the software independent of a specific hardware configuration. In the last years the limits
of these concepts became more and more evident as a growing number of applications
called for machines performing typical human tasks (pattern recognition, sensori-motor-
control, associative memory) and experience showed that sequential computers using con-
ventional algorithms performed very poorly. Therefore, several new types of algorithms
have been proposed in recent years. These, mostly biologically inspired, algorithms (”neu-
ral networks”) are characterized by a large number of simple, independent computational
elements ("neurons”), that exchange data via a large number of connections.

Due to their inherent parallelism neural networks offer a powerful approach for pro-
cessing large amounts of data, but their full potential can be utilized only if they are
implemented on a parallel machine with the appropriate architecture. Therefore, the de-
sign of the hardware can no longer be seen as independent from the software, but is to a
significant degree coupled to the algorithm and, ideally, both must be optimized together.

One major consideration in this optimization concerns the extent to which the task
is divided into parallel subtasks (its "fine-grainedness”). In our contribution we report a
study of this issue for the implementation of a class of neural networks known as ”self-

organizing feature maps” on a Transputer systolic ring and on a Connection Machine
CM-2. The algorithm was implemented with the goal to study the formation and the
adaptive properties of topographic feature maps in the central nervous system of higher
animals within a computationally feasible model. Since one predominant feature of the
brain is the large number of massivly interconnected computational elements (Imm? of
cortex consists of 10° neurons with 1000 synaptic connections each), the focus of our
investigations is directed at networks comprising a large number of neurons, each receiving
a high number of external inputs.

In the following we will present results of simulations obtained with both systems,
and we will compare the performance of the Transputer systolic ring (”coarse-grained”
parallelization) with the Connection-Machine CM-2 (”fine-grained” parallelization) for
the self-organizing feature maps.

2. Algorithm:

Self-organizing feature maps (further referred to as SFM) are based on an algorithm pro-
posed by Kohonen [1, 2]. These networks have several properties recognized today as very
essential for the architecture of the brain, namely layered and topographic organization of
neurons, lateral interaction, Hebb like synaptic plasticity, and capability of unsupervised
learning, and these algorithms are fast and efficient during learning as well as during
retrieval. SFM’s have been applied in the past to a variety of tasks, such as visuomotor
control in a camera-robotarm-system [3, 4], modelling the formation of topographic maps
in the somatosensory cortex [5], optimization problems [6] and speech-processing [7].
The SFM employ a large number of computational units ("neurons”) arranged in one
or in multiple layers. Each unit acts as an elementary storage element for a pattern vector
of varying complexity. During both learning and retrieval, units receive patterns presented
to an array of "receptors” in parallel, competing with each other for their response to the
received pattern and for participation in learning adjustments. Each unit increases its
responsiveness towards the currently presented pattern using a Hebb-like adjustment rule.
The degree of adjustment is a function of the relative match between the pattern vector
currently stored at this unit and the new input, and decreases with decreasing similarity
between each. The units are interconnected by links specifying a ”topology” of the net-
work.This topology coordinates the adjustment
steps of different units: units interconnected over
short paths, comprising only few links, tend to act
in a more similar way. This leads to cooperative
effects, which strongly shortens the learning time.
Figure 1 illustrates the version of the model,
which we implemented on both parallel machines
and on which the following simulations were based.
The network architecture was motivated by a par-
ticular biological situation, the representation of
sensory surfaces (e.g. skin, retina) within certain
areas of the cortex of higher animals. The model neural receptor -
consists of two layers: a ”receptor”-layer and a sheet surface
layer containing the computational units ("neural
sheet”). The computational units are arranged as Fig. 1: Implemented version of the
a two-dimensional square lattice, such that each ~SFM-algorithm (explanation see text).

Tranputer-node /TBOO \
Host-Transputer \\

1
NeXT IBM-AT L1 1414 J I
file-server Terminal [| B
\ 1
T800 T800
\TBOO /

Fig. 2: Schematic diagram of the type of systolic ring network used in our application.

unit has four nearest neighbors (as indicated by the links). Each unit is connected to each
"receptor” of the receptor layer via modifyable connections, whose connection strengths
can be interpreted as components of a stored "pattern-vector”. An input pattern consists
of a set of non-zero excitations on the receptor array, represented by an input vector
7 = {ry,r2,...,mx}T (r; > 0), where n is the number of the receptors in the receptor
surface. In our simulations the input vector 7 is fairly high-dimensional, but the input-
patterns are chosen from a low-dimensional manifold, which can be described by a few
parameters only. The vector 7 is received by each neuron in parallel, and each neuron,
identified by its lattice location (k,[), computes its response oy as a weighted sum

oKl = Z Wiy (1)

over all receptor outputs r;. Each coefficient wy; is a measure of the “strength” of the
connection from receptor ¢ to neuron (k,!). Following the algorithm of Kohonen the neu-
ron (r,s) with the maximal sum o,, is selected. Then all neuron outputs oy are replaced
by the values h,; of a Gaussian output function centered at the previously selected
"neuron” (r,s):

hrsipi(t) = exp [=((r — k)" + (s — 1)*) /o3 (2)] (2)

Subsequently, the connection strengths are changed according to a Hebb-type learning
rule:

wii(t +1) = (Wkii() + € hraa(t) - 7i)/y/Si(wii(t) + () hragpa(t) - 7:)? (3)

The learning step width €(t) decreases linearly from an initial value ¢; to a final value e,
and The width o4(t) of the output-function k., decreases linearly during the simulation
from an initial value o; to a final value o; to allow the neurons to gradually specialize for
different subregions of the input space.

3. Implementation on the Transputer Systolic Ring

The Transputer systolic ring ' (Fig. 2) can be equipped with up to 60 nodes [8]. The
ring has an outlet to a host T414 Transputer. Each node consists of a Transputer IMS
T800G20S running at 20 MHz clock speed, 4 MByte local memory and a parity check
logic, which ensures correctness of data stored in the local RAM. The host Transputer

ldeveloped by H. Grubmiiller, H. Heller and K. Schulten (8]

a) Network Units

N

Network Units

N OHHHH]

?5

Fig. 3: Two strategies for mapping the network onto the nodes of the Transputer systolic ring.

1

3412341 2

Transputer Nodes Transputer Nodes

T414 has 4MByte RAM local memory and serves as a gateway to a PC-AT front end and
to a NeXT file server. The implementation was carried out in Occam II using the INMOS
TDS2 environment. A more detailed description of the hardware is given in another
contribution of these proceedings.!

The much more limited number of processors, compared to the Connection Machine,
requires a partitioning of the network into units significantly larger than neurons. The
increased computational load per unit is, however, partly compensated by the higher
performance of a single Transputer, the larger local memory, and the resulting possibility
to carry out a larger fraction of communication within a single node.

Figure 3 shows two different implementation strategies for the SFM on the Transputer
systolic ring. In the first implementation (Fig. 3a, referred to as I1) the network is
partitioned into N, ”stripes”, where N, is the number of processors in the ring. These
"stripes” are then mapped onto the processors of the ring as depicted in Fig. 3a. In
the second implementation (Fig. 3b, referred to as 12), which was proposed by [9], the
network is partitioned into Ny = N,/N, "stripes” (N, denotes the number of rows in the
network). The neurons are mapped onto the nodes of the ring, such that each processor
contains one row of neurons from each ”stripe”. In this implementation neighboring rows
are still mapped onto neighboring nodes, but the distance between rows mapped onto the
same processor is maximized.

For an excitation function h,.x with finite width the implementation I2 leads to a
higher percentage of load balancing than implementation I1, since load balancing is 100%
until the width of the excitation function falls below the value N,. Therefore, one would
expect the implementation I2 to be most effective in the ” coarse-grained” limit N, < N,
but implementation 12 should generally be preferred for "pure” SOF applications because
of its better performance for short ranged excitation functions h, .

The mapping between network units and Transputer nodes shown in Fig. 3a is opti-
mized for local communication between units of the network and should be used, if the
algorithm (1) - (3) is to be extended to either multilayer networks or to explicitly include
lateral interactions within the "neural sheet” [10].

At the beginning of each adaptation step the parameters describing the current input-
pattern are generated by the host-transputer and transmitted along the ring, so that
each node can compute a local copy of the input-vector locally (Fig. 4). The neuron

1Boehncke K., Heller H. and Schulten K., Molecular Dynamics on a Systolic Ring of Transputers

LEEEEE AHHHHHK

a) b) c)

Fig. 4: Schematic diagram of the implementation of the SFM
on the Transputer system. The large and small rectangles de-
note the host Transputer and thegTransputer nodes grespec- E
tively; communication of data is indicated by arrows. a) gen-
eration and communication of the current pattern p, b) com-
putation of the output values o, ¢) determination and commu-
nication of the coordinates of the maximally active unit, and
d) adjustment of link strengths w.

d)

outputs are then computed in parallel and each processor determines the position of
the maximally active cell of its ”local units”. The coordinates and the output-values
of all "local” maximally active units are shifted once through the whole ring, so that
each processor can determine the coordinates of the ”global” maximally active cell. The
subsequent adaptation step (3) is carried out simultaneously by all processors in the ring.
At fixed intervals, an auxiliary process running parallel with the simulation code evaluates
the state of the network and saves the resulting data to disk.

4. Implementation on the Connection Machine CM-2

The Connection Machine is a massively parallel SIMD computer with a large number
of very simple, single-bit-processors [11]. The system available at our site consists of
32,768 processors with 8 kByte local memory each, connected in a hypercube-topology,
and 1024 WEITEK floating point accelerators which endow the machine with a theoretical
performance of 2.5 GFlops. Two frame-buffer-systems allow parallel graphics output of
data stored in the local processor memories. A parallel mass-storage system (“Data-
Vault”) facilitates fast storage and retrieval of the large amount of data describing the
evolution of the neural network (up to 6 GByte/run for the simulations presented in this
paper). The CM-2 can be accessed from two front end computers (VAX and SUN/4) and
parallel CM-commands can be used from within ordinary, sequential code running on one
of the front ends.

In view of the large number of available processors, the most natural implementation of
a neural network algorithm on the CM-2 is to allocate one processor to one neuron (”fine-
grained” approach). If the number of neurons exceeds the number of CM-processors,
each physical processor can be ”split” into a (for all processors equal) number of ”virtual
processors” with, however, a proportionally reduced local memory. The processors can
be configured as a two-dimensional square lattice to match the geometry of the ”neural
sheet” and the "receptor”-surface (Fig. 1).

At the beginning of each adaptation step the parameters describing the current stim-
ulus are generated by the front end (Fig. 5a) and then transmitted to all CM-processors,
since in our implementation each processor was also used to perform computations for
one pixel of the receptor surface. The excitation values of the receptors are computed in
parallel. The excitation values are retrieved sequentially by the front end and sent to all

Oo0a3d LI O0Od O 0O O W W G
00O LN OOd O o
0 oOoo Ll O00 O O

VS N

front front front front front
end end end end end

a) b) c) d) e)

Fig. 5: Schematic diagram of the implementation of the SFM on the CM-2. The small rectangles
denote the processors of the CM-2; communication of data is indicated by arrows. a) generation
and communication of the current pattern, b) computation of output values o, c) determination
of the maximally active cell, d) retrieving and broadcasting the coordinates of the maximally
active cell, and e) adjustment of link strengths w.

processors of the machine (Fig. 5a), which subsequently compute the output values of the
units in the network. (Fig. 5b). The maximal output is determined and transmitted to
the front end (Fig. 5¢), which retrieves the coordinates of the maximally active unit and
transmits the coordinates back to the CM (Fig. 5d). The adaptation step (3) is again
performed in parallel (Fig. 5¢). After a certain number of steps the state of the network
is evaluated and the resulting data are stored on the parallel mass storage "Data-Vault”.

One main limitation on the realizable network structures is set by the local 8kByte
memory, which must accommodate all weight values, together with pointer information
about the partner neuron of each weight. A second limitation concerns communication:
two or more processors (neurons) cannot simultaneously communicate in parallel with
overlapping sets of processors. However, in the Kohonen ”short-cut” algorithm the steps
involving communication among the units is the maximum operation among the oy and
the communication of the coordinates of the maximally active neuron to all processors.
Both steps are implemented as communication operations via the front end machine rather
than direct interprocessor communications. All other computation steps are “private” to
each neuron and are, therefore, not affected by communication issues. The configuration
of the machine as a two-dimensional lattice was chosen only to facilitate the visualization
of the network parameters on the frame-buffers of the CM-2 during simulation. Since
no interprocessor communication routines are involved, the configuration of the machine
in a particular geometry has no effect on the performance of the algorithm. This is, of
course, no longer true, if lateral connections within the ”neural sheet” are included in an
extended version of the SFM-algorithm [10].

5. Performance of the Algorithm

In the following section the performance of the Transputer systolic ring and the CM-2
is measured by the time needed to run parts of or the whole application program. The
internal timer of the host-Transputer was used to measure the computation time on the
Transputer system. The values given below are the total time-intervals starting after
the program has been distributed over all nodes in the ring and ending after the task
has been completed. They do not include the time needed to retrieve and process the

40 70
= —. 60

30 b
3 S 50
> po}
= £ 40
£ 20 z
£ c 30
[
£ 10 £ 20
- s 10

0 0

0 10,000 20,000 30,000 0 100 200 300
a) Number of Units b) Dimensionality of Input-Space

'Fig. 6: Performance of the Transputer systolic ring consisting of 30 nodes for the implementa-
tions I1 (upper curves) and 12 (lower curves). a) Total time for 2,500 iterations as a function
of the number of units. The dimensionality of the input-space was 100. b) Total time for 2,500
iterations as a function of the dimensionality of the input-space. The network contained 14,400
units. o was decreased linearly from o4 (0) = 80 to 0(2,500) = 0 for both performance tests.

network parameters and to store them on the file-server. The time used on the Connection
Machine system was measured by the routine CM:time. This routine reports the total
("wall-clock”) time, which includes the sequential code sections running on the SUN /4
front end, as well as the time used on the Connection Machine itself. To indicate the
distribution of time between front end and CM, the CM-utilization as well as the time
used by the CM-processors are reported. It turned out, that the total time measured by
CM:time depends strongly on the type of front end (For our code it was approx. 3-4 times
longer for the VAX as a front end) and that it is also influenced by other programs running
on the front end at the same time. Therefore the values given below were obtained solely
for the SUN/4 front end and a front end utilization of more than 97%.

Figure 6 shows the total time required for 5,000 adaptive steps as a function of the
number of units (Fig. 6a) and the dimensionality of the input space (Fig. 6b) for the
implementations I1 and I2 on the Transputer ring. In both cases the computation time
increases linearly with the computational load imposed by the high-dimensional input. If
the number of network units is increased, implementation 12 shows improved performance
compared to I1, which reflects the better load balancing for the ”coarse-grained” mapping.

Figures 7Ta/8a and 7b/8b are the corresponding diagrams for the implementation on the
Connection Machine. On the CM-2 the used number precision can be freely selected, and
Figs. 7, 8 show the results for 32-bit and 16- / 64-bit floating point numbers respectively.
A comparison shows, that the total time does not decrease, if the floating point precision
is reduced from 32 bit to 16 bit. Instead it increases drastically, because for precisions
other than 32 bit the floating point operations can no longer be executed by the WEITEK
FPU’s but have to be calculated by the much slower 1-bit processors.

The total time on the CM-2 is a step-function of the network size, because the num-
ber N, of virtual processors must be an integer multiple of the physical machine size,
which is currently limited to multiples of 8K. If the number of ”"neurons” N, does not
match the number of virtual processors (N, # N,) idle processors lead to an unbalanced
computational load. Best performance is obtained for N, = N,. The height of the steps
is not equal for smaller numbers of units, since the fraction of time used on the CM-2
increases relative to the time used on the front end machines. Figure 9 shows the relative
performance s (ratio of time used on the CM-2 and time used on the Transputer) of the

Figure 7

1S 20
B ';2’3 15
& E o
< =

S ©
£ E s
- -

0 0

0] 50,000 100,000 150,000 0 200 400 600 800 1000
a) Number of Units b) Dimensionality of Input-Space
Figure 8
800 600

— — 500
2 .:C_’ 400
I 4001 E 300
c c
® v 200
£ 2001 . E

();=I—',—_J 0

(0] 50,000 100,000 150,000 0 200 400 600 800 1000

a) Number of Units b) Dimensionality of Input-Space

Fig. 7: Performance of a 16K section of the CM-2 with SUN/4 front end for a data precision
of 32 bit (IEEE single precision format). a) Total time (upper curve) and time used on the
processors of the CM-2 (lower curve) for 5,000 iterations as a function of the number of units
in the network. The input-dimensionality was 100. The CM-utilization increased from 82% (for
16K units) to 89%, 93% and 96% (for 128K units). b) Total time (upper curve) and time used on
the processors of the CM-2 (lower curve) for 5,000 iterations as a function of the dimensionality
of the input space. The network contained 16,384 units. CM-utilization was 83%.

Fig. 8: Performance of a 16K section of the CM-2 with SUN/4 front end for a data precision
of 16 bit (lower curve) and 64 bit (upper curve). a) Total time for 5,000 iterations as a function
of the number of units in the network. The input-dimensionality was 100. The CM-utilization
increased from 94% (for 16K units) to 96%, 98% and 99% (for 128K units) for the 16-bit
precision. CM-utilization for the 64-bit precision was 99%. b) Total time for 5,000 iterations
as a function of the dimensionality of the input space. The network contained 16,384 units.
CM-utilization was 94% and 99% respectively. The 64-bit data format used in this performance
test did not conform with the IEEE-standard for significant and exponent length, so that the
floating point operations were executed by the 1-bit processors.

Transputer system compared to the CM-2 as a function of the number of Transputers
for the implementations I1 and 12. The relative performance for implementation 11 is a
linear function of the number of nodes in the ring. Implementation I2 generally performes
better, especially in the ”coarse-grained” limit of a small number of Transputers. In the
"fine-grained” limit (i.e. one row per processor) both implementations perform equally
well. The improvement in the "coarse-grained” limit depends strongly on the shrinking
of the excitation function with time. All results stated above were obtained using a linear

decrease of the width o (¢) from an ini- 0.07

tial value oy to a final value of zero. We 8 (06
found this adaptation scheme appropri- EA 0.05
. o . c© '

ate for the application of SFM’s to bi- S ~

. . . T 0.04
ological modelling. For other applica- 2
tions, e.g. robot control, which require g'g 0.03
a longer "refinement phase” in the adap- &~ 0.02
tation process, with o} having intermedi- & 0.0l
ate or small values, we expect a further 0.00, - - -

. . 0 10 20 30 40
performance improvement for implemen-
. Number of T800 Nodes

tation I2.

An extrapolation of Fig. 9 to s =1

gives a total of 510 Transputer nodes be- curve) and I2-implementation (upper curve) on
ing equivalent to a 16K section of the the Transputer ring compared to the implemen-
CM-2 (for 32 bit precision). The number tation on a 16K section of the CM-2 with SUN/4

of Transputers may at first sight appear front end. The network size was 14,400 units.
high, but it must be kept in mind that

the 16K processors in the CM-2 are supported by 512 32-bit WEITEK FPUs, which make
an essential contribution to the overall performance of the CM-2 for the given floating
point intensive task. Without the FPU’s 39 Transputer nodes give the same performance
for the SFM algorithm than the 16K section of the CM-2 assuming 32-bit precision.

In the following we will provide some benchmark results concerning interprocessor
communication rates, which might be useful for estimating the relative performance of
the CM-2 vs. the Transputer ring for communication intensive neural network algorithms.
We define one elementary communication step as the task to communicate the output of
each unit (a 32 bit floating point number) to every other unit in the network.

The configuration of the CM-processors as a two-dimensional square lattice with pe-
riodic boundary conditions allowed to use the fast NEWS-operations for interprocessor
communication. During a first step all data were "rotated” along the X-axis of the proces-
sor grid until each processor contained the output-values of all processors with the same
X-coordinate. In a second step the collected output-values were ”chunked” into fields,
which could "rotated” along the Y-axis of the grid with single NEWS-commands.

Figure 10 shows a comparison between the time needed for 1000 communication steps
on the CM-2 and on the Transputer system for a neural network consisting of 32,768

Fig. 9: Relative performance of the I1- (lower

S 2
§ 4 /——""—_'—_. E
g 3 Z - - "
= £,
£, =
@ 7]
E £
_— -
0 T D : : 0 '
o] 10 20 30 40 0 10,000 20,000 30,000 40,000
a) Number of T800 nodes b)

Number of Processors

Fig. 10: Total time for 1,000 communication steps as a function of the number of Transputer
nodes (a) and the number of processors of the CM-2 (b). Network size was 32,768 units.

neurons. The slight increase in communication time with the number of Transputer nodes
(Fig. 10a) is due to the fact, that for a small number of nodes data can be transmitted
in larger chunks. Note, that the time used for one communication step on the CM is
considerable and only slightly less than the time used on the Transputer system. For a
network with a 100-dimensional input space one communication step on the CM takes
approximately as much time as one complete adaptation step of the SFM algorithm. If
the ”chunking” of data on the CM-2 cannot be done or if the general router commands
must be used, communication time on the CM may increase by a factor of 100 or more.
Therefore the performance of the Transputer-system will strongly improve relative to the
CM-2, if the number of communication operations is comparable to or larger than the
number of arithmetic and relational instructions or larger.

6. Scientific Applications:

In this section we want to give examples of results we have obtained with both parallel
machines and for which the high performance of the parallel hardware was essential. The
presented results shall merely serve as an illustration of what aspects of the SFM’s can be

investigated using parallel supercomputers. If the reader is interested in details, he may
wish to refer to [5, 10, 12].

A. Scaling Issues:

Application of the SFM’s have so far been restricted to small networks consisting of typ-
ically 1000 units or less and data-spaces of at most a few dozen dimensions. Biological
systems, on the other hand, are characterized by a large number of highly interconnected
neurons and even the smallest functional unit beyond the neuron in the cortex, the ”func-
tional column”, consists of 10° elements. It is clearly necessary to narrow the gap in scale
between the current models and actual brain structures, and modern parallel computers
begin to be able to simulate reasonable large networks in affordable time. An important
point is to evaluate statistically the impact of the scaling-up of the system on its adaptive
capabilities, in particular speed of convergence, tolerance against noise and robustness
against unfavorable or random initialization. Figure 11 shows one result of Monte-Carlo
simulations addressing an important scaling issue: They demonstrate, that the percentage
of properly formed feature maps does not change in the ”continuum limit”: N. — oo,
01(0)/ N, = const, i.e. that the number of iterations of eq. (1) - (3) necessary to guarantee
a certain percentage of converged maps is independent of the number of neurons.

B. Formation and Readaptation Properties of the Somatotopic Map:

In the somatosensory cortex the complete body surface is represented by a distorted
but topographic "map”, such that neighboring tactile stimuli on the skin surface excite
neighboring neurons in the cortical map. The map is dynamically maintained and changes,
driven by stimulation of the skin receptors [13, 14]. The self-organized formation and the
readaptation properties of the map of the inner hand-surface have been studied within a
large scale model using the SFM algorithm. Two of the artificial maps obtained in the
simulations are shown in Fig. 13. The left image shows the representation of the hand
surface within the "model-cortex” as it has emerged after 10,000 tactile stimuli. The
right image shows a readapted map of the hand-surface after the fourth finger has been
“amputated”. The units in the area of the "model-cortex”, which were deprived of their

Figure 11 Figure 12

> 100 1,500
S
2 80 @
@ ; -]
83 ST 1,0001
nZz » 5
— o ez
o5 40 33
&2 aE 5004
Se c®
33 £
“—
S 0 v 0 ' v
0 10,000 20,000 0 500 1,000 1,500
Number of Units mean square radtus {(analytical

calculation)

Fig. 11: Percentage of successfully converged SFMs as a function of the number of units in
the network. The diagram summarizes the convergence statistics of 240 networks (40 for each
data point). The simulations were done on the CM-2 as well as on the Transputer system. The
parameters were: o,(0)/N. = 0.625, ¢ = 0.08, o, = 0.2, 100 input dimensions, and 10,000
iterations.

Fig. 12: A comparison between the analytically calculated radius of the receptive fields of units
in a SFM-network with simulation results obtained with the Transputer system.

external input immediately after ”"amputation”, did not end up useless but were allocated
to the tactile surface of the neighboring fingers.

C. Formation of Receptive Fields:

Many neurons within the cortex respond to excitations from a certain area of the re-
ceptor surface, which is called their receptive field. For the formation of a topographic
representation it is essential, that the cells develop localized receptive fields. This issue
was investigated for the SFM-algorithm analytically as well as by computer simulations.
While it is immediately clear from the algorithm, that each receptive field must corre-
spond to some small volume in the high-dimensional input space this does not yet imply
that this volume actually will correspond to receptive fields that are also spatially local-
ized in the two-dimensional receptor surface itself. Analytical calculations (for details see

Fig. 13: a) Topographic rep-
resentation of the inner hand
surface within a ”model-cortex”
consisting of 16,384 units ar-
ranged in a 128 x 128 square lat-
tice. Each unit was connected
to the 800 ”tactile receptors” lo-
cated on the ”receptor surface”,
the ”model-skin”. The regions
representing the palm and the
five fingers are are marked by dif-

ferent shadings. b) Topographic representation of the inner hand surface after one finger was
?amputated”. The region formerly corresponding to the "amputated” finger was ”reused” to
represent part of the receptor surface of the neighboring fingers with a higher resolution. Both
maps were generated by the SFM-algorithm implemented on the CM-2.

[12]), as well as computer-simulations confirmed, that all cells develop spatially localized
receptive fields. Figure 12 shows a comparison between analytically predicted receptive
field diameters and results of a simulation. The correspondence is very accurate, except

for parameter values leading to very large receptive fields, for which edge effects of the
model become noticeable.

7. Summary:

The goal of this paper was to present a comparison between the performance of a Trans-
puter system and a Connection Machine CM-2 for implementations of an important neu-
ral network algorithm, the self-organizing feature maps (SFM). The results show that a
Transputer system with about 500 nodes is equivalent to a 16K section of the CM-2, which
comes close to the theoretical equivalent of 550 nodes expected from the product data sheet
(1.25 GFlops and 2.25 MFlops for a 16K section of the CM-2 and for one Transputer node,
respectively). Because of the extremely low communication requirements of the SFM, this
algorithm is very well suited for a ”fine-grained” implementation as offered by the CM-2
and the performance is only slightly affected by the configuration of both systems.

Since one communication step (involving the communication of one 32-bit floating
point number from each neuron to every other neuron) takes at maximum threefold time
on the Transputer system, compared to the CM-2, the performance of a Transputer
based system will strongly improve for networks algorithms with higher communication
requirements.

Acknowledgements: This research has been supported by the University of Illinois at Urbana-
Champaign. Computer time on the Connection Machine CM-2 has been made available by
the National Center for Supercomputer Applications. The authors would like to thank the
Boehringer-Ingelheim Fonds for support of this project by a scholarship to K. Obermayer and

R. Kufrin and J. Quinn for their help and support in all technical matters concerning the use
of the Connection Machine system.

8. References:

(1] Kohonen T. (1982a), Biol. Cybern. 43:59

[2] Kohonen T. (1982b), Biol. Cybern. 44:135

[3] Martinetz T., Ritter H. and Schulten K. (1989), Proceedings of the International Joint
Conference on Neural Networks, Washington 1989, 11:351

(4] Ritter H., Martinetz T. and Schulten K. (1989), Neural Networks 2, pp.159

(5] Obermayer K., Ritter H. and Schulten K. (1990), Proceedings of the ICNC-Conference,
Diisseldorf 1990, in press

(6] Hueter G.J. (1988), Proceedings of the IEEE International Conference on Neural Networks,
Vol. I, p. 85

[7] Kohonen T. (1989), in: I. Aleksander (Ed.), Neural Computing, Kogan Page Ltd., London

[8] Grubmiiller H., Heller H. and Schulten K. (1990), Mol. Simulation, in press

[9] Hogdes R.H., Wu C.H. and Wang C.J. (1990), Proceedings of the IICNN Conference, Wash-
ington 90, Vol. II, p. 141

(10] Obermayer K., Ritter H. and Schulten K. (1990), Parallel Computation, in press

(11] Hillis W.D. (1985), The Connection Machine, MIT Press, Cambridge, Mass.

[12] Obermayer K., Ritter H. and Schulten K. (1990), IJCNN Conference Proceedings, San Diego
'00, submitted

(13] Merzenich M.M. et al.(1983), Neurosci. 10, 3:639
[14] Merzenich M.M. et al.(1984), J. Comp. Neu. 224:591

