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Abstract Two structure determination methods, based on the molecular dynamics flexible fitting

(MDFF) paradigm, are presented that resolve sub-5 Å cryo-electron microscopy (EM) maps with

either single structures or ensembles of such structures. The methods, denoted cascade MDFF and

resolution exchange MDFF, sequentially re-refine a search model against a series of maps of

progressively higher resolutions, which ends with the original experimental resolution. Application

of sequential re-refinement enables MDFF to achieve a radius of convergence of ~25 Å

demonstrated with the accurate modeling of b-galactosidase and TRPV1 proteins at 3.2 Å and 3.4

Å resolution, respectively. The MDFF refinements uniquely offer map-model validation and B-factor

determination criteria based on the inherent dynamics of the macromolecules studied, captured by

means of local root mean square fluctuations. The MDFF tools described are available to

researchers through an easy-to-use and cost-effective cloud computing resource on Amazon Web

Services.

DOI: 10.7554/eLife.16105.001

Introduction
Cryo-electron microscopy (cryo-EM) has evolved into one of the most effective structure determina-

tion tools in modern day structural biology, achieving in recent years resolutions rivalling those of

X-ray crystallography or NMR spectroscopy (Cheng, 2015). Furthermore, cryo-EM based structure

determination overcomes two major bottlenecks faced in traditional X-ray crystallography, namely,

the arduous task of preparing well-ordered crystals of macromolecules (Unger, 2002), and the more

fundamental problem with capturing these molecules in unphysiological states as a result of crystal

contacts (Neutze et al., 2015). Consequently, cryo-EM provides a natural way of resolving the struc-

tures of large macromolecular complexes.

Historically, computational methods were required to bridge the resolution gap between crystal-

lography and cryo-EM to produce atomic-resolution models of biomolecular complexes. Various

real-space refinement methods that combine crystallographic structures and cryo-EM densities for

structure determination have been developed, including DireX (Schröder et al., 2007), Flex-EM

(Topf et al., 2008), Rosetta (DiMaio et al., 2015), FRODA (Jolley et al., 2008), Phenix real space

refinement (Afonine et al., 2013), and Molecular Dynamics Flexible Fitting (MDFF) (Trabuco et al.,

2008, 2009; McGreevy et al., 2016).

MDFF, in particular, has proven to be an extremely successful refinement method as evidenced

by its numerous applications (Goh et al., 2015; McGreevy et al., 2016) ranging from the intricate
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ribosomal machinery (Villa et al., 2009; Trabuco et al., 2011; Frauenfeld et al., 2011;

Wickles et al., 2014) to a host of non-enveloped viruses (Zhao et al., 2013). So far this success has

been limited to structure determination from typically low-resolution cryo-EM maps in the 7–25 Å

range which, indeed, represented the state-of-the-art at the time of MDFF’s inception

(Trabuco et al., 2008). However, seminal advances in detection hardware and programs over the

past three years (Li et al., 2013; Milazzo et al., 2011) have enabled now the routine availability of

high-resolution (<5 Å) EM maps for a range of biological systems including ion channels (Liao et al.,

2013), enzymes (Bartesaghi et al., 2014, 2015), membrane fusion machinery (Zhao et al., 2015),

and key functional components of the ribosome (Fischer et al., 2015; Brown et al., 2015).

High-resolution maps pose an imminent challenge to the traditional map-guided structure deter-

mination methods as the maps now characterize near-atomic scale features, the interpretation of

which requires extremely precise structure building and validation protocols (DiMaio et al., 2015).

For example, conformation of the protein sidechains, which are more flexible than the backbone,

are now discernible within the maps and, thus, require precise modeling of the dihedral angles up to

Cb atoms while also respecting the map boundaries (Barad et al., 2015).

In order to produce atomic models with correct backbone and sidechain geometries, as well as

minimal potential energy, structure determination tools must be augmented with chemically accu-

rate force fields and exhaustive search algorithms respecting density constraints. Inspired by crystal-

lographic modeling techniques, where such structure-building requirements have already been

addressed for the resolution of 3–5 Å diffraction data (DiMaio et al., 2013; Murshudov et al.,

2011; McGreevy et al., 2014), tools such as Rosetta have introduced Monte Carlo simulation-based

segment building and refinement protocols with heuristic force fields (DiMaio et al., 2015), to han-

dle high-resolution EM maps. Other notable automated model-building tools that can be used for

eLife digest To understand the roles that proteins and other large molecules play inside cells, it

is important to determine their structures. One of the techniques that researchers can use to do this

is called cryo-electron microscopy (cryo-EM), which rapidly freezes molecules to fix them in position

before imaging them in fine detail.

The cryo-EM images are like maps that show the approximate position of atoms. These images

must then be processed in order to build a three-dimensional model of the protein that shows how

its atoms are arranged relative to each other. One computational approach called Molecular

Dynamics Flexible Fitting (MDFF) works by flexibly fitting possible atomic structures into cryo-EM

maps. Although this approach works well with relatively undetailed (or ‘low resolution’) cryo-EM

images, it struggles to handle the high-resolution cryo-EM maps now being generated.

Singharoy, Teo, McGreevy et al. have now developed two MDFF methods – called cascade

MDFF and resolution exchange MDFF – that help to resolve atomic models of biological molecules

from cryo-EM images. Each method can refine poorly guessed models into ones that are consistent

with the high-resolution experimental images. The refinement is achieved by interpreting a range of

images that starts with a ‘fuzzy’ image. The contrast of the image is then progressively improved

until an image is produced that has a resolution that is good enough to almost distinguish individual

atoms.

The method works because each cryo-EM image shows not just one, but a collection of atomic

structures that the molecule can take on, with the fuzzier parts of the image representing the more

flexible parts of the molecule. By taking into account this flexibility, the large-scale features of the

protein structure can be determined first from the fuzzier images, and increasing the contrast of the

images allows smaller-scale refinements to be made to the structure.

The MDFF tools have been designed to be easy to use and are available to researchers at low

cost through cloud computing platforms. They can now be used to unravel the structure of many

different proteins and protein complexes including those involved in photosynthesis, respiration and

protein synthesis.

DOI: 10.7554/eLife.16105.002
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the refinement of high-resolution EM maps include Buccaneer (Cowtan, 2006), ARP/wARP

(Langer et al., 2008), and Moulder (Topf et al., 2006).

Driven by a vision to extend the capabilities of flexible fitting approaches (Topf et al., 2008;

Trabuco et al., 2008; Tama et al., 2004; Suhre et al., 2006; Kovacs et al., 2008; Wu et al., 2013)

for addressing high-resolution maps, two new MDFF methods are introduced here. These methods,

denoted cascade MDFF (cMDFF) and resolution exchange MDFF (ReMDFF), augment the traditional

MDFF method (Trabuco et al., 2008, 2009; McGreevy et al., 2016) (called direct MDFF henceforth)

with enhanced conformational sampling techniques, namely simulated annealing (Brünger, 1988)

and replica exchange molecular dynamics (Sugita and Okamoto, 1999). The central idea behind the

techniques introduced is to fit a search model sequentially to a series of maps of progressively

higher resolutions, ending with the original experimental resolution; all but the last in the series are

computationally blurred lower-resolution derivatives of the original map, so that larger-scale features

of the structure are determined first by fitting to the blurred densities, and smaller-scale refinements

are performed subsequently during the fitting to higher-resolution densities. Altogether, this treat-

ment enables a richer conformational sampling of the model within the map than direct MDFF,

thereby allowing accurate modeling of the global and local structural features from the map; a simi-

lar treatment has previously been employed to increase the radius of convergence of MDFF proto-

cols, but with crystallographic data (Singharoy et al., 2015).

The cMDFF and ReMDFF methods are demonstrated for structure analysis based on 3.2-Å and

3.4-Å resolution maps of b-galactosidase (Bartesaghi et al., 2014) and the TRPV1 channel

(Liao et al., 2013), respectively. The two methods were found to resolve atomic structures with

accuracy greater than that of direct MDFF and comparable to that of Rosetta, even with poor

choices of search models. The accuracy is evaluated in terms of the quality of fit measured through

global and local cross-correlations (GCC and LCC), integrated Fourier shell coefficients (iFSC), and

EMRinger scores (Barad et al., 2015), as well as in terms of the quality of structural integrity meas-

ures like MolProbity (Chen et al., 2010).

In the second part of the present study we establish that structural flexibility, as measured by

root mean square fluctuations or RMSF within the MDFF simulation, provides an ensemble-based

indicator of local and overall resolution of a map offering, thus, a quality measure of an EM map

based on the inherent dynamics of the imaged macromolecule. In line with this new finding, RMSF

values are shown to provide a physical basis for the determination of optimal sharpening B-factors

that maximize the signal-to-noise ratio within a map. These B-factors are determined at three differ-

ent levels of model description: whole-system, per-domain, and per-residue.

Finally, use of the ReMDFF method on cloud computing platforms is discussed. Cloud computing

is now a highly suitable approach for computational biology and can be employed for large-scale sci-

entific computing, data analysis, and visualization tasks. For example, Amazon Web Services has

been previously demonstrated to be a low-cost cloud computing platform for processing cryo-EM

data (Cianfrocco et al., 2015). We demonstrate now the usage of Amazon Web Services, highlight-

ing the platform’s capability for rapidly fitting structures to EM density with ReMDFF. The web-inter-

face makes it readily possible for experimental groups around the world to deploy MDFF in an easy

and economical way, bypassing the need for their own staff, software, and hardware resources.

Results
In the following section, we first describe the methodological advances achieved within cMDFF and

ReMDFF for the resolution of sub-5 Å maps. Search model preparation, refinement, and structure

validation protocols based on these advances are subsequently demonstrated for five exemplary

protein complexes that were chosen based on the availability of high-resolution (3–5 Å) EM maps

and atomic structures. Finally, the performance of ReMDFF on Amazon’s cloud computing platforms

is described, demonstrating that our MDFF software offers an efficient web-based resource for struc-

ture determination from EM maps.

Simulation concept
In direct MDFF, an initial atomic structure is subjected to an MD simulation with an additional poten-

tial energy term VEM that is proportional to the sign-inverse of the EM map. Through VEM , steering
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forces locally guide atoms towards high-density regions, thereby fitting the structure to the map

(see Materials and methods).

The equilibrium structure obtained in the simulation represents a global minimum in VEM . For

maps in the low resolution range (6–15 Å), this global minimum is broad, accomodating an ensemble

of conformations defined by the overall shape of the macromolecule (Trabuco et al., 2008,

2011). In contrast, at the mid-resolution range of 4–6 Å, densities corresponding to the backbones

become discernible, and at sub-4 Å resolutions, even sidechains can be resolved. At such high reso-

lutions, VEM now features multiple proximal local minima which correspond to recurring spatial pat-

terns within a macromolecule, such as helices aligned in parallel or strands in a b-sheet. As shown in

Figure 1, the energy barriers separating these local minima are typically twice as high as those in

the case of low-resolution maps. The existence of such potential minima in high-resolution maps

exposes MDFF to a long-known weakness of traditional MD-based algorithms, namely entrapment

of the fitted structure within undesired local minima instead of reaching the global minimum of VEM .

Not unexpectedly, therefore, direct MDFF yields structurally poor or functionally irrelevant models

with high-resolution EM maps (Figure 2—figure supplement 1) (DiMaio et al., 2015).

To mitigate this weakness in direct MDFF, we introduce cMDFF and ReMDFF. In cMDFF, the

structure is fitted, in a series of MDFF simulations, to maps of gradually increasing resolution. First,

the experimental map is smoothened by applying a series of Gaussian blurs with increasing half-

widths, s, to obtain a set of theoretical maps with gradually decreasing resolution; s = 0 Å corre-

sponds to the experimental map, and s > 0 Å corresponds to a smoothened one (see

Materials and methods). Illustrated in Figure 1, the density-dependent potential derived from the

smoothest map (i.e. the one with the largest s value) features a clear global minimum representing

the large-scale structural features of the protein. Second, a search model is fitted to this map, allow-

ing resolution of these large-scale features. Third, the resulting structure is employed as the search

model for fitting to the next higher-resolution map in the series. These fitting and search model

refreshment steps are repeated through the series of maps in order of decreasing s, until the struc-

ture is finally fitted to the experimental map (see Video 1 for TRPV1 refinement. An additional virtual

reality version can be found at https://www.youtube.com/watch?v=UwwVC6C9tw0).

The gradual increase in map resolution over the course of the simulations allows the structure to

explore a greater conformational space than in direct MDFF. The structure thus avoids entrapment

within local minima of the density-dependent potential and is accurately fitted to the near-atomic

density features of the experimental map while also resolving the larger scale features.

In ReMDFF, the cascade scheme is infused with a greater degree of automation. Multiple MDFF

simulation replica are run in parallel with each replica fitting a model to a map of a specific resolu-

tion. Based on a Metropolis formula analogous to that of conventional replica exchange molecular

dynamics simulations (Sugita and Okamoto, 1999), but now derived in terms of density and not

temperature (see Materials and methods), the models are exchanged at regular time intervals

between maps from neighboring pairs of replica. Stepwise improvements in fit occur during

exchanges between a poorly fitted model at a high resolution with a well-fitted model at a lower res-

olution. This well-fitted model is further refined against the high-resolution map until

convergence is reached, and exchange between the chosen resolutions ceases. Further details are

described in Materials and methods.

ReMDFF has advantages over cMDFF both in terms of efficiency and automation as it can take

advantage of modern parallel computing hardware and the powerful and adaptive replica exchange

interface of NAMD (Jiang et al., 2014). Nonetheless, as presented in the following, both cMDFF

and ReMDFF outperform direct MDFF in quality and speed across a range of high-resolution

examples.

Search model preparation and refinement
In an initial proof-of-principle computation, cMDFF and ReMDFF were applied to fit a structure of

carbon monoxide dehydrogenase to a 3-Å synthetic density map. The same techniques were subse-

quently applied to obtain refined structures of two more protein systems, namely TRPV1 (Liao et al.,

2013) and b-galactosidase (Bartesaghi et al., 2014), for which experimental densities of 3.4 Å and

3.2 Å resolution respectively are available. In each case, a direct MDFF simulation was also per-

formed for the purpose of comparison. The MDFF-derived structures were then subjected to a

model validation analysis, to evaluate the quality of the models with established protocols in the
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Figure 1. Visual summary of advanced MDFF methodology. A graphic table illustrating MDFF refinement of a model of carbon monoxide

dehydrogenase using a high-resolution map. The map represents an open conformation while the initial search model was obtained through

crystallography of a closed conformation. This search model was independently fitted, using direct MDFF, to individual members of a set of maps

obtained by applying Gaussian blurs of various half-widths (s, first column) to the experimental density. These maps are visualized as a 3D surface in

the second column, while the resulting MDFF potentials VEM are represented in cross-section in the third column. Notice the increase in number of

contiguous density regions as s increases. This increase in contiguity is manifested in the lowering of high VEM barriers (red) for small s values to low or

flat energy profiles (blue) for larger s values, as observed in the VEM potential cross-sections. Reduced barrier heights allow the structure to explore the

conformational space freely during fitting. The structure after 500 ps of fitting, shown in red, is superimposed on the known target structure, shown in

blue, in the fourth column. The time evolution of RMSD with respect to the target during fitting is shown in the fifth column. The RMSD plots show that

direct fitting to lower resolution maps requires fewer time steps to reach convergence. In fact, the structure never becomes less deviated than the initial

7-Å RMSD from the target in the direct MDFF of the highest-resolution map (i.e. in the absence of Gaussian blurring). The inset shows refinements of

the same structure through cMDFF and ReMDFF employing the same set of maps. A clear improvement over direct MDFF is apparent, with

convergence to within 1.7 Å and 1.0 Å of the target achieved within 1000 and 100 ps for cMDFF and ReMDFF respectively.

DOI: 10.7554/eLife.16105.003
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cryo-EM field. Additional examples chosen for

this analysis include g-secretase at 4.5 Å

(Lu et al., 2014) and 3.4-Å (Bai et al., 2015), b-

galactosidase at 2.2-Å (Bartesaghi et al., 2015)

and the proteasome at 3.3 Å (Li et al., 2013)

resolution. Comparisons between the direct and

advanced MDFF protocols, and wherever possi-

ble, with other available fitting techniques, such

as Rosetta (DiMaio et al., 2015), elucidate the

general pros and cons of the flexible fitting

strategy.

Proof of principle
The performance of cMDFF and ReMDFF was

evaluated on a test system, carbon monoxide

dehydrogenase, which exhibits a closed and an

open conformation (Darnault et al., 2003). Both

these conformations have been crystallized, and are reported respectively in chains C and D of the

PDB entry 1OAO. For our demonstration, the closed conformation (1OAO:chain C) was used as the

search model, while the open one (1OAO:chain D) was the target.

First, a 3-Å resolution synthetic density map was constructed in Phenix (Adams et al., 2010),

employing phases from the 1OAO structure and the associated diffraction data truncated at 3 Å.

This map was then masked about chain D to yield a high-resolution envelope characterizing the

open conformation. Assuming that the crystallographic model provides an accurate benchmark, the

corresponding map for chain D determined here represents the best possible density data at 3 Å

resolution that is experimentally attainable for the open conformation. Finally, through direct MDFF,

cMDFF and ReMDFF, the search model constructed from chain C was fitted into this density to

derive an atomic structure representing the open conformation. Both the cMDFF and ReMDFF

refinements were performed for a set of six maps with s values ranging from 5 to 0 Å at constant

decrements of 1 Å.

Accuracy of the fitting protocols was evaluated by comparing the fitted chain C structures with

the crystallographically reported target chain D model. Direct MDFF of the 3 Å synthetic map per-

formed for 2 ns converged to a structure with an RMSD of 7 Å relative to the target model. In sharp

contrast, the cMDFF- and ReMDFF-generated structures are within 1.7 Å and 1 Å RMSD of the tar-

get (see the inset of Figure 1). It is also noted that fitting to the lowest-resolution (i.e. one with s =

5 Å) brings about an immediate decrease in RMSD from the target generating structures that are

within 2 Å RMSD. Fitting of the structure to subsequent high-resolution maps brought the RMSD

down to 1.0 Å.

The results demonstrate that the new protocols are capable of attaining well-fit structures where

direct MDFF does not. In particular, one can think of the new protocols as extending the radius of

Video 1. cMDFF Refinement of TRPV1.

DOI: 10.7554/eLife.16105.004

Table 1. b-galactosidase MDFF results. cMDFF and ReMDFF provide better fitted structures than direct MDFF according to various

criteria. It is noteworthy that all structures refined by any form of MDFF display an improved MolProbity (Chen et al., 2010) score

compared to the original de novo structure.

Structure RMSD(Å) EMRinger iFSC1(Å) iFSC2(Å) MolProb. GCC

de novo (Bartesaghi et al., 2014) 0.0 2.25 4.03 5.00 3.14 0.67

Refined de novo 0.6 4.23 4.19 5.20 1.23 0.68

Initial 7.7 0.24 0.14 0.15 1.49 0.48

Direct MDFF 3.7 2.31 2.11 2.74 1.38 0.56

cMDFF 0.7 3.16 4.22 5.22 1.37 0.67

ReMDFF 0.9 3.45 3.76 4.66 1.13 0.67

DOI: 10.7554/eLife.16105.014
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convergence to at least 7 Å, rendering the fitting procedures less dependent on the quality of the

starting structure.

Refinement of b-galactosidase
In a second test case, a search model was fitted into the 3.2 Å map (Bartesaghi et al., 2014) of b-

galactosidase employing direct MDFF, cMDFF, and ReMDFF. Noting that the radius of convergence

of the proposed MDFF protocols was at least 7 Å for the aforementioned test case, the initial search

model was prepared such that it had an RMSD of 7 Å from the reported structure. This model was

obtained by applying to the reported structure (obtained by de novo modeling within the EM map

[Bartesaghi et al., 2014]) a high temperature MD protocol described in Appendix 1, Section 3 and,

subsequently, choosing from the collection of trajectory structures one of RMSD 7 Å from the

reported structure and with the lowest GCC with respect to the reported map (Bartesaghi et al.,

2014) (Figure 2—figure supplement 2a).

Summarized in Table 1, the fitting results, in terms of quality of fit as well as model quality, are

significantly better for cMDFF and ReMDFF than for direct MDFF: (i) RMSD of the fitted structure

with respect to the reported de novo model is 0.7 Å and 0.9 Å for cMDFF and ReMDFF respectively,

much lower than the 3.7 Å RMSD attained with direct MDFF (Figure 2—figure supplement 3a); (ii)

EMRinger scores for cMDFF and ReMDFF are 3.16 and 3.45 respectively, higher than the 1.91

obtained for direct MDFF, implying accurate fitting of sidechains into the density; (iii) MolProbity

scores are consistently small for all the flexible fitting techniques in part due to fewer, less severe

steric clashes and fewer Ramachandran outliers (further detailed in Table 2); (iv) integrated FSC

(iFSC2, corresponding to the range 3.4–10 Å on the FSC plot obtained as per Appendix 1 - Section

6), considered a more stringent measure of model quality than CC (DiMaio et al., 2015), attained

higher values of 5.22 Å and 4.66 Å for cMDFF and ReMDFF, respectively, than 2.74 Å for direct

MDFF. iFSC1, evaluated at the lower resolution range of 5–10 Å improves from 2.11 Å for direct

MDFF to 4.22 Å and 3.76 Å for cMDFF and ReMDFF, respectively, showing a trend similar to that of

iFSC2 corresponding to the high-resolution range; and (v) GCCs improved from an initial value of

0.48 to 0.56, 0.67 and 0.67 for direct, cMDFF, and ReMDFF protocols respectively. Similarly, typical

residue LCC values improved from about 0 to greater than 0.80 (Figure 2—figure supplement 4a

and Figure 2—figure supplement 5). Overall, cMDFF and ReMDFF refinements produce structures

that interpret the 3.2-Å b-galactosidase map much more accurately than direct MDFF does.

Table 2. Structure quality indicators for b-galactosidase structures. b-galactosidase structures investigated in the present study were

uploaded to the MolProbity server (http://molprobity.biochem.duke.edu) to extract the quantities presented below. The results show

that the cMDFF- and ReMDFF-refined structures not only exhibit good measures of fit, but also improve the clash score and rotamer

geometries, relative to the de novo and initial structures, while incurring only a small expense in Ramachandran statistics, bad angles,

and Cb deviations.

de novo (Bartesaghi et al., 2014) Refined de novo Initial Direct MDFF cMDFF ReMDFF

Clashscore 53.7 0.0 0.0 0.0 0.0 0.0

Poor rotamers (%) 11.6 3.8 4.2 3.0 4.4 1.37

Favored rotamers (%) 67.4 90.8 87.8 92.1 89.8 95.3

Ramachandran outliers (%) 0.2 0.7 2.7 3.0 1.6 2.7

Ramachandran favored (%) 97.4 95.8 91.1 91.1 94.4 90.9

MolProbity 3.14 1.23 1.49 1.38 1.37 1.13

Cb deviations (%) 0.0 0.05 4.92 0.18 0.29 0.39

Bad bonds (%) 0.09 0.04 3.61 0.02 0.01 0.03

Bad angles (%) 0.03 0.60 3.98 0.63 0.49 0.37

RMS distance (Å) 0.007 (0.025%) 0.019 (0%) 0.035 (0.237%) 0.022 (0%) 0.019 (0%) 0.021 (0%)

RMS angle (degrees) 1.1 (0.009%) 2.2 (0.009%) 3.6 (1.177%) 2.4 (0.103%) 2.1 (0.018%) 2.3 (0.085%)

Cis prolines (%) 8.06 8.06 6.45 6.45 6.45 8.06

Cis non-prolines (%) 1.15 1.15 0.0 0.0 1.15 0.0

DOI: 10.7554/eLife.16105.015
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Figure 2a shows, visually, how the cMDFF-derived structure differs from the direct MDFF structure

in terms of fit. In judging the RMSD values to the target model the reader is reminded that equilib-

rium MD simulations of a single structure at room temperature typically exhibit RMSD values relative

to the initial structure or the average structure of about 3 Å; the same is true for b-galactosidase

(see Figure 2—figure supplement 6 in Appendix 1 - Section 7). Consequently, an RMSD of 0.7 Å of

the cMDFF/ReMDFF-fitted model relative to the target implies a high-quality refinement. The high

quality of this refinement is further supported by visualizations of accurate sidechain placements

within the density, shown in Figure 2—figure supplement 7.

The cMDFF- and ReMDFF-refined structures were found to be comparable in every quality mea-

sure in comparison to the reported de novo structure (Bartesaghi et al., 2014); in fact, the overall

Molprobity and EMRinger scores are significantly better in cMDFF and ReMDFF. However, a closer

look at the Molprobity score (Table 2) reveals that even though cMDFF vastly improves clash score

and poor rotamers, it marginally increases the percentage of Ramachandran outliers and Cb devia-

tions relative to the de novo structure. Nonetheless, both cMDFF and ReMDFF improved structural

Figure 2. Comparison between cMDFF and direct MDFF fitted models. Models of (a) b-galactosidase and (b)

TRPV1, obtained from cMDFF (blue) and direct MDFF (red) fitting simulations are superimposed. The cMDFF-

fitted models fit well into the high-resolution maps (grey) of each molecule, whereas the direct MDFF models have

become trapped in local minima that result in portions of the models protruding from the maps. ReMDFF-fitted

models are almost identical to those from cMDFF and are therefore not shown.

DOI: 10.7554/eLife.16105.005

The following figure supplements are available for figure 2:

Figure supplement 1. Global cross-correlation as a measure of fit.

DOI: 10.7554/eLife.16105.006

Figure supplement 2. Comparison of initial models to target (published) models.

DOI: 10.7554/eLife.16105.007

Figure supplement 3. Convergence of cMDFF, ReMDFF, and direct MDFF simulations.

DOI: 10.7554/eLife.16105.008

Figure supplement 4. Local cross-correlations during cMDFF.

DOI: 10.7554/eLife.16105.009

Figure supplement 5. Local cross-correlations during direct MDFF to refine de novo structures.

DOI: 10.7554/eLife.16105.010

Figure supplement 6. Equilibration of cMDFF-refined model of b-galactosidase.

DOI: 10.7554/eLife.16105.011

Figure supplement 7. Residues of b-galactosidase fitted within density map.

DOI: 10.7554/eLife.16105.012

Figure supplement 8. FSC cross-validation plots.

DOI: 10.7554/eLife.16105.013

Singharoy et al. eLife 2016;5:e16105. DOI: 10.7554/eLife.16105 8 of 32

Tools and resources Biophysics and Structural Biology Computational and Systems Biology

http://dx.doi.org/10.7554/eLife.16105.005
http://dx.doi.org/10.7554/eLife.16105.006
http://dx.doi.org/10.7554/eLife.16105.007
http://dx.doi.org/10.7554/eLife.16105.008
http://dx.doi.org/10.7554/eLife.16105.009
http://dx.doi.org/10.7554/eLife.16105.010
http://dx.doi.org/10.7554/eLife.16105.011
http://dx.doi.org/10.7554/eLife.16105.012
http://dx.doi.org/10.7554/eLife.16105.013
http://dx.doi.org/10.7554/eLife.16105


statistics with respect to the initial model (Table 1, third row) which was intentionally chosen to have

a large deviation (RMSD of 7.7 Å) from the de novo structure.

Noting that the quality of MDFF output depends strongly on that of the search model, a second

cMDFF simulation was also performed to refine the de novo structure within the reported map. The

simulation, labeled ‘refined de novo’ in Table 1, yielded a structure that was superior in all the qual-

ity measures considered in comparison to the de novo structure as well as to the structures obtained

from the various MDFF fittings of the other, 7.7 Å deviated initial model. A closer look at the Mol-

probity scores (Table 2) now reveals that not only are clash score and poor rotamers vastly

improved, but the Ramachandran outliers and Cb deviations are also comparable to the de novo

structure.

A third cMDFF refinement was further performed with a search model of even lower structural

quality (Supplementary file 1E, third row) compared to that of Table 1 (third row). Structural statis-

tics for the refinements from this lower-quality search model are provided in Supplementary file 1F.

Comparison of the three cMDFF refinements starting with three search models of varying structural

quality reveal that the poorer the secondary structure of the search model, measured in terms of

higher percentages of rotamer and Ramachandran outliers, the worse the local structural statistics of

the MDFF/cMDFF/ReMDFF-refined model. Surprisingly, large scale map-model validation measures,

such as RMSD, GCC, or iFSC values, remain insensitive to such local discrepancies in the refined

model. This insensitivity is apparent in the similarity of RMSD, GCC, and iFSC values of the three

refined models of b-galactosidase (Table 1 and Supplementary file 1E), which indeed feature very

different number of Ramachandran outliers: 0.7% (Table 2-Refined de novo), 1.6% (Table 2-cMDFF)

and 7.8% (Supplementary file 1F-cMDFF).

The high-precision of sub-5 Å maps demands correct assignment of secondary structure, which

determines backbone geometry directly and sidechain conformations indirectly. In light of the initial

model quality dependence of MDFF, it is advisable to begin refinement with an initial model of max-

imal secondary structure information, yet with minimal tertiary structure. Dependable initial second-

ary structure is also required since MD simulations have limited capability of recovering the structure

of a protein fold if the search model begins with a random coil conformation (Freddolino et al.,

2010). To this end, notwithstanding observed cMDFF improvements of the secondary structure

(Table 2 columns 4 vs. 6, and also demonstrated for g-secretase [Supplementary file 1D]), moder-

ate- to high-confidence homology models will serve as the most optimal starting point, as has been

successfully shown for MDFF with low-resolution EM (Chan et al., 2011; Noble et al., 2013;

Wickles et al., 2014) and crystallographic data (McGreevy et al., 2014; Li et al., 2014). Quantita-

tively speaking, employing the current example (b-galactosidase) and the following one (TRPV1), it is

now shown that a search model which deviates from the target by an RMSD of 7–25 Å featuring

Ramachandran outliers of ~3%, poor rotamers of 11–38%, overall Molprobity score of ~4 and

EMRinger score of ~0.20 can be accurately refined against a sub-5 Å EM map with cMDFF or

ReMDFF.

In terms of efficiency, the ReMDFF protocol exhibits the quickest convergence, arriving at steady

state within 0.1 ns of simulation, whereas cMDFF requires around 0.8 ns. Both methods employed

eleven maps with Gaussian blurs starting from a width of 5 Å and decreasing in steps of 0.5 Å

towards the original reported map. To ensure that the cMDFF procedure did not over-fit the struc-

tures, cross-validation using EMRinger and FSC analysis was performed using half-maps from the

EMD-5995 entry. iFSC and EMRinger values were found to be almost identical in both direct and

cross comparisons. Details are provided in Appendix 1 - Section 11.

In addition to the MDFF simulations described so far for b-galactosidase, other simulations were

performed to investigate in more detail the capabilities of MDFF. These simulations are described in

Appendix 1 - Section 7. First, it was found that fitting of the Cb atoms to the density is crucial for

accurate placement of the sidechains. In agreement with prior EMRringer results (Barad et al.,

2015), it is confirmed that MDFF placement of the backbone does not guarantee correct sidechain

geometries, even with state-of-the-art CHARMM36 (Klauda et al., 2010) force fields. Second, MD

simulation of the cMDFF-fitted b-galactosidase model revealed that this model is indeed an excel-

lent representation of the most probable structures of the thermodynamic ensemble that character-

izes the 3.2 Å map.
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Refinement of TRPV1
In the third test case, cMDFF and ReMDFF protocols were employed to fit an initial model to the

3.4-Å map (Liao et al., 2013) of the temperature-sensing protein TRPV1. The search model was pre-

pared from the reported de novo structure through an interactive MD protocol described in Appen-

dix 1 - Section 3. The model deviated from the de novo structure by an overall RMSD of 10 Å and

locally, by about 25 Å in the vicinity of the ankyrin repeats represented by residues 199 to 430. This

degree of deviation is in the ballpark of the lowest resolutions of usable EM maps and, therefore,

represents the upper limit of uncertainty between a search model and the fitted structure that MDFF

can still reconcile. Having to address an RMSD of 25 Å between search and target models, the pres-

ent example represents an extreme test case for judging the radius of convergence of the proposed

MDFF methods.

Fitting results for TRPV1, described in Appendix 1 - Section 8, were significantly better for cMDFF

and ReMDFF than for direct MDFF, but now with much poorer search models than those employed

for the b-galactosidase refinements. For example, cMDFF and ReMDFF refinements produced struc-

tures that interpret the 3.4-Å TRPV1 map within an RMSD of 2.4 Å and 2.5 Å from the target de

novo model, much more accurately than does direct MDFF which converges to structures at an

RMSD of 7.9 Å.

The cMDFF- and ReMDFF-obtained structures were found to be better in every overall quality

metric in comparison to the de novo structure. Figure 2b illustrates the contrast in fit between the

cMDFF and direct MDFF-derived structures. To observe the effect of MDFF on a substantially well-

fitted initial structure, a direct MDFF simulation was also performed to refine the de novo structure

within the reported map. The simulation yielded a structure that was comparable in all the quality

measures considered to the structures obtained from cMDFF and ReMDFF (Appendix 1 - Section 8).

However, the TRPV1 fitting results show that cMDFF and ReMDFF can have a radius of convergence

as high as 25 Å in RMSD, whereas direct MDFF requires at the outset a well-fitted structure to

deliver a satisfactory model. Also, since the number of Ramachandran outliers were minimal in both

the 25 Å-deviated and de novo initial models, the cMDFF, ReMDFF, and direct MDFF-refined mod-

els exhibited low percentages of Ramachandran outliers, as reflected in Supplementary file 1B.

As was observed already for b-galactosidase, the ReMDFF protocol exhibited the quickest con-

vergence, arriving at steady state within 0.02 ns of simulation, whereas cMDFF required around 0.27

ns. Both methods employed six maps with Gaussian blurs starting from a width of s = 5 Å

and decreasing in steps of 1 Å to the reported s = 0 Å map. Cross-validation with half-maps was

also performed on the cMDFF structure, as per the b-galactosidase simulations, to ensure that it was

not over-fitted. As in the case of b-galactosidase, iFSC and EMRinger scores for direct and cross

comparisons were similar. FSC analysis results are described in Appendix 1 - Section 11.

A separate set of model validation analyses was performed on the well-resolved TM portion of

TRPV1 to pursue a direct comparison of a MDFF refined model with one from Rosetta (Barad et al.,

2015). As reported in Appendix 1 - Section 9, MDFF produced results comparable to those of

Rosetta when all the heavy atoms are coupled to the density: though the EMRinger score is margin-

ally lower relative to that from Rosetta, the GCC and iFSCs are higher for MDFF; also MDFF pro-

vides a marginally higher MolProbity score. Altogether, major discrepencies between Rosetta and

direct MDFF that were reported for the high-resolution EM maps (DiMaio et al., 2015) are now

absent when employing the cMDFF and ReMDFF protocols, even with poorer choices of search

models than those used with Rosetta. Thus, cMDFF and ReMDFF enable flexible fitting techniques

to pursue resolution of structures within state-of-the-art maps obtained via cryo-EM.

Model validation
An EM density map represents a thermodynamic ensemble of atomic conformations

(Schröder et al., 2007; Brunger et al., 2012; Schröder et al., 2010). Conventionally, however, only

a single model representing a best fit to the map is reported. One may ask how statistically repre-

sentative a single model can be. To quantify the deviation of a fitted model from the rest of an

ensemble of simulated molecules, root mean square fluctuation (RMSF) of the model relative to the

ensemble-averaged structure was computed during an MDFF refinement simulation employing the

protocol described in Methods. In the following, the RMSF of a fitted model is first shown to be

indicative of the quality of fit of the model, as well as to represent the degree of natural
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conformational variation exhibited within the thermodynamic ensemble underlying the map. Second,

the RMSF values are found to correlate both locally and globally with the resolution of an EM map,

providing an interpretation of map quality based on the inherent (i.e., natural) dynamics of the mac-

romolecule under observation. Finally, RMSF values are also employed to identify optimal B-factor

values for the sharpening of a map. Altogether, the results of the present study demonstrate that

RMSF of a fitted model during an MDFF refinement provides valuable information on the model.

RMSF and quality of fit
The relationship between RMSF values and quality of model fit is demonstrated for the cMDFF

refinement of b-galactosidase at 3.2 Å resolution. The initial conformation is a poor fit of the map,

characterized by low values of GCC, LCC, and iFSC (the row containing ‘initial’ structure in Table 1).

Such conformations belong to a diverse ensemble of poorly fit structures, explored by the search

model in the early phase of the fitting, that gives rise to high initial RMSF values shown in Figure 4—

figure supplement 1. In the ending phase of the refinement, well-fitted structures are obtained with

improved GCC, LCC, and iFSC (cMDFF row of Table 1). Owing to the high resolution (3.2 Å) of the

EM density map, the population of these well-fitted structures is much smaller than that of partially-

fitted structures. Thus, as can be observed in Figure 4—figure supplement 1, the converged

ensemble of the well-fitted structures exhibit much smaller fluctuations than the initial one. Low

RMSF values for the fitted structure indicate therefore, that (i) the structure has been modeled

unambiguously within the map, and (ii) the structure can be regarded as representative of the

ensemble underlying the 3.2-Å b-galactosidase map; since per-residue fluctuations about the fitted

structure (Figure 4—figure supplement 1) are less than 1 Å, only marginal backbone and sidechain

variations within the ensemble arise (Singharoy et al., 2013).

RMSF and quality of map
Apart from representing the quality of fit, RMSF values monitored during an MDFF simulation corre-

late closely with the overall and local resolution of an EM map. Even though high-resolution cryo-EM

data are becoming increasingly obtainable, resolution is not always uniform throughout a map. For

example, Figure 3 reflects the variation in local resolution of map regions corresponding to residues

of b-galactosidase and TRPV1. Conformational flexibility can cause heterogeneity in the cryo-EM

data (Leschziner and Nogales, 2007), producing local resolutions lower than that of the overall

map.

Local resolution analysis (Kucukelbir et al., 2014) can be especially important for determining the

parts of a high-resolution map that realistically contain side chain information and the parts that do

not, preventing over-interpretation of the latter. MDFF protocols can be adjusted to account for

such local variations and better inform the process of model validation. For example, if analysis

shows that certain residues reside in low-resolution regions of the density, the per-atom weighting

factor applied to the forces derived from the density can be lowered.

The RMSF-resolution correlation is found to hold in the cases of TRPV1 (PDB 3J5P), 2.2-Å b-galac-

tosidase (PDB 5A1A), g-secretase (PDB 5A63 and 4UPC), and the T20S Proteasome (PDB 3J9I). Gen-

erally, the lower the resolution of the map, the higher the corresponding overall RMSF during MDFF

simulations. For example, the overall RMSF during MDFF of the 4.5-Å g-secretase model and map is

greater than that of the 3.4-Å model and map which, in turn, is greater than that of the 2.2-Å map

and model of b-galactosidase (see RMSF labels on the upper column of Figure 4). The correlation

between map resolution and model RMSF extends further to local features within the density. In Fig-

ure 4 (upper row), RMSFs of atoms plotted against local resolutions of the corresponding map

regions display linear correlation between the two quantities. Again, higher RMSF indicates lower

local resolution.

The physical basis for considering RMSF values of a group of fitted atoms during an MDFF refine-

ment as an indicator of the map resolution follows from the linear correlation of these values with

RMSF of the same set of atoms during unbiased MD (Figure 4, bottom row). Noting that the RMSF

value during unbiased MD simulations reflects flexibility (Karplus, 1990), this linear correlation

clearly establishes the dependence of RMSF during MDFF refinement on the inherent flexibility of

the macromolecule, at least for our four demonstration systems (see Appendix 1 - Section 2 for MD

simulation details). Since the flexibility of a molecule during the imaging process contributes to the
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limiting resolution of the resulting EM density map (Kucukelbir et al., 2014), it is not surprising that

overall and local map resolutions correlate with overall and local RMSF values of the best fitted

model (Figure 4).

In broad terms, through the present study we establish that RMSF, together with GCC, LCC,

EMRinger (Barad et al., 2015), and iFSC, provide a comprehensive set of criteria for evaluating

model and map quality on both global and local levels. The added value of RMSF is particularly evi-

dent on the local level, where the other measures may not perform as consistently. For example, a

high LCC may be the result of a highly flexible structure fitting to a low-resolution region of the

map, and not necessarily of a good representation of the local structure. As a result, although multi-

ple low-resolution regions of the model in Figure 4—figure supplement 2a possess similar LCCs,

disparate RMSFs of the same regions clearly indicate differences in local quality of the model. Like-

wise, EMRinger scoring, when applied to small groups of residues, does not correlate with local res-

olution (Figure 4—figure supplement 2b), and, therefore, is incapable of distinguishing regions of

small number of atoms by local model quality. In contrast, RMSF clearly resolves local resolution,

and, thus, resolves the map and model quality even with as few as 100 atoms.

RMSF and B-factor determination
High contrast within an EM map allows clear identification of secondary structural elements. How-

ever, experimental imaging discrepancies arising from specimen movement and charging, radiation

damage, and partial microscope coherence, or computational discrepancies due to inaccurate

Figure 3. Models colored by local resolution, square of RMSF, and B-factor. The published models of (a) b-

galactosidase (PDB 5A1A) and (b) TRPV1 (PDB 3J5P) are colored by the local EM map resolutions, the per-residue

mean square fluctuations (RMSF2) during MDFF simulation, and published B-factors. Comparison of these figures

shows qualitative agreement between local resolution, RMSF2, and B-factor. In fact, the local resolutions and

B-factors correlate linearly with RMSF2 of a fitted model both in the presence as well as absence of the EM map

(more details in Figure 4).

DOI: 10.7554/eLife.16105.016
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determination of the single particle order parameters (Wade, 1992; Fernández et al., 2008), intro-

duce fuzziness to the EM map, thus hindering secondary structure identification. B-factor sharpening

restores lost contrast by resolving the fuzzy features and, therefore, is a crucial step of map genera-

tion that affects map interpretation. Here, we describe the use of RMSF as a physical basis for the

determination of optimal B-factors that preserve contrast during map sharpening.

Figure 5, Figure 5—figure supplement 3, Figure 4—figure supplement 4 demonstrate the rela-

tionship between RMSF and B-factor for the 2.2-Å map of b-galactosidase, 3.4-Å map of TRPV1 and

4.5-Å map of g-secretase; these three systems were chosen due to their reasonable size and avail-

ability of unsharpened data. An initial decrease in the RMSF values is observed with increase in

B-factor sharpening of the map. However, the RMSF eventually reaches a minimum before increasing

as the B-factor is further increased. Surprisingly, for all the three structures the B-factor correspond-

ing to the minimum RMSF coincides with the one determined by Guinier analysis (Fernández et al.,

2008; Rosenthal and Henderson, 2003) to provide maximum contrast. In fact, for TRPV1, B-factors

determined from the RMSF minima are found to be higher for the soluble regions than for the trans-

membrane helices (Figure 5—figure supplement 1, b vs. c), again, in agreement with those B-fac-

tors derived from the Guinier analysis. Therefore, the RMSF analysis of maps with varying B-factor

sharpening provides an alternate procedure for the determination of the optimal B-factor, which has

been traditionally determined by Guinier analysis.

Figure 4. RMSF vs. local resolution plots for various simulations. For each test case shown, atoms in the MDFF-refined structure are classified by local

resolution of the map regions they are fitted into. The average RMSF value of atoms (during MDFF simulation) in each resolution bin is calculated and

plotted against the local resolution in the cases of (a) b-galactosidase (b-gal) at 2.2 Å, (b) TRPV1 at 3.4 Å, g-secretase (g-sec) at (c) 3.4 Å and (d) 4.5 Å

resolution, and proteasome (see Figure 4—figure supplement 3). The numbers of atoms in the resolution bins are displayed as a histogram (in red)

spanning a system-specific range of resolutions. The lowest resolution bins contained low (<20) populations and visual inspection consistently revealed

the atoms to be on the edges of the density or were otherwise located inside map noise, and were therefore ignored during further analysis. A clear

linear correlation between RMSF and local resolution can be found in each case, such that applying a linear fit produces the high R2 value shown in

each graph heading. Also displayed in each heading is an overall RMSF, averaged over all atoms in the system. The overall RMSF reflects the

conformational variety of structures that fit within the map, and is found to correspond to the map resolution such that higher resolutions produce

lower RMSFs. The second row of plots show that the RMSF during MDFF simulation also linearly correlates with RMSF during unbiased MD simulations

of (e) b-gal, (f) TRPV1 and (g,h) g-sec, establishing that fluctuations during MDFF reflect the inherent flexibility of a system.

DOI: 10.7554/eLife.16105.017

The following figure supplements are available for figure 4:

Figure supplement 1. Per-residue RMSFs over b-galactosidase cMDFF fitting.

DOI: 10.7554/eLife.16105.018

Figure supplement 2. EMRinger score and LCC do not predict local resolution in TRPV1.

DOI: 10.7554/eLife.16105.019

Figure supplement 3. Average RMSF vs. local resolution during MDFF simulation of proteasome.

DOI: 10.7554/eLife.16105.020

Figure supplement 4. RMSF values of individual residues during direct MDFF of published b-galactosidase models.

DOI: 10.7554/eLife.16105.021
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The rationale for optimal B-factor selection based on an analysis of RMSF values is the following.

As pointed out above and in Figure 4, RMSF of a fitted model is a function of the quality of the cor-

responding map. Following this argument, the maps in Figure 5, Figure 5—figure supplement

1 and Figure 5—figure supplement 2 that produce the model with the lowest RMSF during fitting

represent the density envelopes where atoms can be positioned with the least uncertainty at the

given experimental resolutions. The corresponding sharpening B-factor thus provides the optimal

contrast for atom placement and secondary structure determination.

Our argument for the RMSF-based selection of B-factors is supported by the well-established

quadratic relationship of B-factors with the RMSF of atoms of a structure in an experimental setting,

i.e. 8p2/3(RMSF)2 (Rosenthal and Henderson, 2003; Liu and Xiong, 2014). This relationship indeed

implies that the smaller the average atomic fluctuations, the lower are the B-factors, and by defini-

tion (Liu and Xiong, 2014) the higher are the measured structure factor amplitudes, and hence the

contrast, of the resulting map in both crystallographic and EM experiments (Liu and Xiong, 2014;

Fernández et al., 2008). By analogy, RMSF within MDFF is a measure of these average atomic fluc-

tuations under the experimental setting (Figure 4, bottom row) and, therefore, within a set of maps

of varying B-factors, the highest contrast is indicated by the lowest RMSF obtained during fitting of

a model. Since Guinier analysis of EM data selects B-factors based on the same atomic displace-

ment-structure factor relationship that justifies the RMSF-based selection of B-factors

(Rosenthal and Henderson, 2003), the B-factor selected from our analysis of the lowest RMSF

matches excellently with those from the Guinier analysis of EM maps.

The higher contrast of the B-factor sharpened map, over the unsharpened one, is evident from

the higher quality of the models derived from the sharpened maps. Presented in Figure 5a,

Figure 5. Effect of map sharpening on residue flexibility of b-galactosidase. (a) Overall RMSF of a fitted 2.2Å b-galactosidase structure (PDB 5A1A)

during direct MDFF fitting as a function of the B-factor of the fitting map exhibits a parabolic trend. Guinier analysis identifies a B-factor of �75 as

optimal, for which the corresponding RMSF (shown in red) coincides with the minimum of the trend line. EMRinger scores (shown in blue) of the same

structures show a negative parabolic trend, with the peak coinciding with the minimum of the RMSF plot. (b) The linear relationships between local

RMSF during MDFF and during unbiased MD for the unsharpened map and optimally sharpened map are compared. While the linear relationship is

preserved in both cases, RMSFs in the sharpened case are slightly lower than in the unsharpened case.

DOI: 10.7554/eLife.16105.022

The following figure supplements are available for figure 5:

Figure supplement 1. Effect of map sharpening on residue flexibility in TRPV1.

DOI: 10.7554/eLife.16105.023

Figure supplement 2. Effect of map sharpening on residue flexibility in g-secretase.

DOI: 10.7554/eLife.16105.024

Figure supplement 3. EMRinger scores as a function of B-factor.

DOI: 10.7554/eLife.16105.025

Figure supplement 4. Atom-by-atom B-factor for a b-galactosidase monomer.

DOI: 10.7554/eLife.16105.026
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Figure 5—figure supplement 3b, and Figure 5—figure supplement 1a, for the cases of b-galacto-

sidase, g-secretase, and TRPV1, respectively, are EMRinger scores of models fitted to unsharpened

and sharpened maps. These scores indicate clearly that the models derived from maps at B-factor

sharpening of �50 (Figure 5a), �100 (Figure 5—figure supplement 3b), and �100 (Figure 5—fig-

ure supplement 1a) are more accurate than those derived from the unsharpened ones. Indeed, as

further illustrated in Figure 5a, Figure 5—figure supplement 3b, and Figure 5—figure supplement

1, the maximum EMRinger score is attained for the same B-factor that produces the minimum

RMSF. Sharpening by B-factors of magnitudes any higher than 50 for b-galactosidase, and 100 for g-

secretase or TRPV1 damages key density features thus reducing the quality of the associated fitted

models. In addition, correlation of the RMSF of the fitted structure with that from an unbiased MD

of the system is still preserved (Figure 5b and Figure 5—figure supplement 2b) for the B-factor

sharpened map, confirming that the dynamical fluctuations of the structure within the sharpened

map reflects the inherent dynamics of the system. Altogether, RMSF establishes a unique map-

model validation criterion that represents an ensemble view of the fitted structures, while also pre-

venting over-sharpening of the EM maps.

RMSF and per-residue B-factors
The quadratic relationship between RMSF and B-factors can be further employed to determine per-

residue B-factors. Presented in Figure 3, the per-residue RMSF2 of b-galactosidase and TRPV1,

derived from MDFF, show excellent agreement with the distribution of local resolution and experi-

mentally reported B-factors: regions with higher RMSF2 correspond to lower local resolution and

higher per-residue B-factors, and vice versa. In fact, the quantitative agreement between the B-fac-

tors derived from MDFF through the computation of 8p2/3(RMSF)2 (0.02 < (RMSF)2<4.43 [Figure 3])

and those reported in the experiments is remarkable (Figure 5—figure supplement 4); a cross-cor-

relation of 55% is found between the data sets, which improves to 60% in the structured regions.

Larger discrepencies are observed between the RMSF-based and reported B-factors of TRPV1, par-

ticularly in the soluble region (Figure 3b). This discrepency is expected, as for poorly resolved

regions MD provides up to six-fold higher B-factors (Kuzmanic et al., 2014); the higher B-factors

indeed have been demonstrated to be a more accurate representation of conformational diversity

(Kuzmanic et al., 2014). For the TRPV1 example, the highest computed B-factor is 8p2/3*9.25 =

240.5 (Figure 3b) compared to the reported value 53.17. However, the majority of the computed

B-factors fluctuatate about the value of 8p2/3*1.73 = 44.98, which is in fair agreement with the

reported values of 20–30.

Overall, B-factors of cryo-EM maps are typically calculated by Guinier analysis for maps with reso-

lutions better than ~10 Å (Fernández et al., 2008; Rosenthal and Henderson, 2003). Using a mask

around specific regions of interest, estimation of local B-factors for different parts of a map is also

possible. However, this method is limited to large domains of macromolecular complexes due to

problems associated with tight masking of cryo-EM maps. For maps with resolutions better than

~3 Å, local B-factors could be estimated and refined in X-ray crystallography programs. However,

most highresolution cryo-EM maps have resolutions between 3 to 5 Å (Liao et al., 2013;

Bartesaghi et al., 2014; Zhao et al., 2015; Fischer et al., 2015). In this resolution range, B-factors

could be estimated from MDFF and used as prior information to improve model building and refine-

ment. For resolutions better than 3 Å, MDFF-derived values may serve as initial estimates of B-fac-

tors. Furthermore, many cryo-EM maps show local variations in resolution, complicating the model

building process. A possible solution may be to combine local B-factor refinement for highresolution

regions of a map and B-factors derived from MDFF for lower resolution regions. A resolution-depen-

dent weighting scheme could be incorporated to combine the different values for optimal perfor-

mance, which may help improve the accuracy of atomic models derived from high-resolution cryo-

EM maps.

Accessibility through cloud computing
ReMDFF involves many independent, though sporadically communicating, MDFF simulations that

can be run well on a parallel computer as exploited by the NAMD software for the case of replica

exchange simulations (Jiang et al., 2014). As a result, ReMDFF provides an efficient and automated

method which can converge on a final fitted structure more quickly than direct or cMDFF (Figure 2—
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figure supplement 3). However, a potential bottleneck may exist with respect to the computing

hardware that a researcher has access to. Cloud computing offers a potential solution, allowing a

researcher to focus on the scientific challenges of their project without having to worry about local

availability and administration of suitable computer hardware.

To prove the feasibility of performing ReMDFF simulations on a cloud platform, we performed

ReMDFF for a test system, carbon monoxide dehydrogenase (PDB 1OAO:chain C), on the Amazon

Web Services (AWS) Elastic Compute Cloud (EC2) platform. The test system converges to the known

target structure in approximately 0.1 ns simulation time. The time to convergence requires very little

wall clock time, and, therefore, incurs a small monetary cost to a user (Table 3). However, it should

be noted that human error and varying experience level can easily add to the incurred cost of cloud

usage. Some systems may require multiple simulations to achieve a high quality structure and, there-

fore, additional time beyond the example discussed here. Furthermore, preparing a structure for

simulation may require additional time and resources over the purely simulation-oriented results pre-

sented here. The files and information necessary to run ReMDFF on the test system using EC2 cloud

computing resources are available at (http://www.ks.uiuc.edu/Research/cloud/). The Implementation

section of the Methods contains further details for setting up and running ReMDFF simulations.

Discussion
Flexible fitting methods have facilitated structure determination from low-resolution EM maps for

more than a decade (Tama et al., 2004; Suhre et al., 2006; Velazquez-Muriel et al., 2006;

Orzechowski and Tama, 2008; Topf et al., 2008; Kovacs et al., 2008; Lopéz-Blanco and Chacón,

2013;Wu et al., 2013) and continue to be the methods of choice for resolving molecular systems with

atomic resolution. MDFF, in particular, has been a front-runner among methods that have facilitated

the discovery of some of the most complicated structures in modern day structural biology

(Hsin et al., 2009; Sener et al., 2009; Gumbart et al., 2011; Frauenfeld et al., 2011; Zhao et al.,

2013;Wickles et al., 2014).

cMDFF and ReMDFF, the new variants of MDFF introduced above, offer now accurate fitting of

atomic-level structures within sub-5 Å EM maps, a feat thus far inaccessible to direct MDFF. These

new methods extend the radius of convergence of MDFF to at least 25 Å, fitting models to maps of

resolutions as high as 3.2 Å. This radius of convergence is at least twice that reported for Rosetta

refinements of the 20S proteasome (DiMaio et al., 2015). Such a broad radius of convergence will

allow the refinement of extremely poorly guessed initial models with MDFF, as demonstrated in the

cases of b-galactosidase and TRPV1 reported here.

ReMDFF simulations involving the so-called replica-exchange molecular dynamics converge

quickly using a small number of replicas and are thus amenable to cloud computing applications.

Running ReMDFF on the cloud lowers greatly the barrier to usage of the method, providing a cost-

effective and practical solution to fitting structures to high-resolution cryo-EM densities for research-

ers who neither own nor can administer their own advanced computer hardware.

The accuracy of structures refined by cMDFF and ReMDFF has been confirmed by standard error

analysis protocols, both in terms of quality of fit as well as in terms of the quality of the model. The

results clearly show that sidechain refinements through MDFF produce accurate placement of Ca

and Cb atoms and modeling of the associated dihedrals.

Beyond the standard error analysis protocols, which apply to single static structures, the quality

of both the fit and the model can be evaluated by ensemble-based measures. An example

Table 3. Performance and cost results for ReMDFF of carbon monoxide dehydrogenase on Amazon

Web Services (AWS) Elastic Compute Cloud (EC2) platform. Costs are incurred on a per-hour basis,

with a 1 hr minimum.

Instance type CPU Performance (ns/day) Time (hours) Simulation cost ($)

c3.8xlarge 30 5.88 0.41 1.68

c3.4xlarge 12 3.33 0.72 0.84

c3.2xlarge 6 1.35 1.78 0.84

DOI: 10.7554/eLife.16105.027
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demonstrated in this study pertains to the use of RMSF during MDFF refinement for simultaneously

evaluating the quality of model, map, and fit. Furthermore, utilizing the fact that the inherent flexibil-

ity of a macromolecule is a key determinant of the achievable resolution of the corresponding map,

RMSF values have been employed to identify the optimal amount of sharpening for a given map

offering the highest contrast, as established typically through Guinier analysis. The RMSF computa-

tions in MDFF provide a viable means of determining per-residue B-factors.

Altogether, interpretation of a map as being representative of an ensemble rather than a single

model brings to light new ways of model validation. EM maps, including those at high-resolution,

typically do not have a uniform local resolution (Kucukelbir et al., 2014) and contain low-resolution

regions, such as flexible exterior or transmembrane segments (Leschziner and Nogales, 2007). The

sub-5 Å EM maps have also been able to resolve proteins in multiple conformations

(Matthies et al., 2016). Both these type of maps will continue to benefit from accurate ensemble-

based flexible fitting techniques for the foreseeable future. MDFF provides a natural method to

model flexible regions; de novo models constructed for one conformational state can be flexibley fit-

ted into the density of the other state(s), thus avoiding the arduous task of model construction for all

the conformational states for capturing a conformational transition process with cryo-EM.

Materials and methods
In the following section, we first outline the methodology underlying direct MDFF, cMDFF, and

ReMDFF, along with specific protocols applied for the refinement of b-galactosidase and TRPV1

models. Second, we describe the computations of local and global root mean square fluctuation

(RMSF) values, that are utilized for the evaluation of map-model quality. Finally, details on the

computational implementation of all the three MDFF protocols are provided.

Direct MDFF
MDFF requires, as input data, an initial structure and a cryo-EM density map. A potential map is gen-

erated from the density and subsequently used to bias a MD simulation of the initial structure. The

structure is subject to the EM-derived potential while simultaneously undergoing structural dynamics

as described by the MD force field.

Let the Coulomb potential associated with the EM map be FðrÞ. Then the MDFF potential map is

given by

VEMðrÞ ¼
z

FðrÞ�Fthr

Fmax�Fthr

� �

ifFðrÞ �Fthr ;

z ifFðrÞ<Fthr :

(

(1)

where z is a scaling factor that controls the strength of the coupling of atoms to the MDFF potential,

Fthr is a threshold for disregarding noise, and Fmax ¼maxðFðrÞÞ. The potential energy contribution

from the MDFF forces is then

UEM ¼
X

i

wiVEMðriÞ ; (2)

where i labels the atoms in the structure and wi is an atom-dependent weight, usually the atomic

mass.

During the simulation, the total potential acting on the system is given by

Utotal ¼ UMDþUEMþUSS (3)

where UMD is the MD potential energy as provided by MD force fields (e.g. CHARMM) and USS is a

secondary structure restraint potential that prevents warping of the secondary structure by the

potentially strong forces due to UEM. A detailed description of the potentials arising in Equation 3 is

given in Trabuco et al (Trabuco et al., 2008, 2009).

After the MDFF and restraint potentials are created through the MDFF plugin of VMD

(Humphrey et al., 1996), the initial structure is rigid-body docked (e.g. with Situs [Wriggers, 2010])

into the density map. Prior to simulation, MDFF-specific parameters can be modified and include z

and the subset of atoms to be coupled to the MDFF potential. The latter typically consists of all non-
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hydrogen atoms or backbone atoms and z is usually set to 0.3. MDFF can be performed in various

simulated conditions, including different temperatures and vacuum, membrane, and explicit or

implicit (Tanner et al., 2011) solvent environments. The choice of parameters and conditions

depends on the requirements of each specific case. For example, a highly polar molecule would be

more accurately simulated in explicit solvent rather than in vacuum, but the computational cost

would be much higher in this case. The MDFF simulation is run until the system has reached statio-

narity, as determined by RMSD; typical run times are nanoseconds.

Cascade MDFF
In cascade MDFF (cMDFF), the initial structure is sequentially fitted to a series of potential maps of

successively higher resolution, with the final potential map being the original one derived from the

EM map. Starting with i ¼ 1, the ith map in the series is obtained by applying a Gaussian blur of

width si � 0~�A to the original potential map, such that si decreases as the structure is fitted in the

sequence i ¼ 1; 2; . . . ; L, where L is the total number of maps in the series, so that sL � 0 ~�A. One

can intuitively understand cMDFF as fitting the simulated structure to an initially large and ergodic

conformational space that is shrinking over the course of the simulation towards the highly corru-

gated space described by the original MDFF potential map.

Figure 1 provides a visual representation of cMDFF. For a mathematical illustration, suppose that

the original potential map can be written as a sum of Gaussians

VEMðrÞ ¼
X

n

cnG r ; r0n; sn
� �

; (4)

where cn is a weight, G r ; r0n; sn
� �

is a Gaussian function centered at r0n with half-width sn and evalu-

ated at r. The result of a Gaussian blur of half-width si on VEM is (see Appendix 1 - Section 1 for

details)

Vsi
ðrÞ ¼

X

n

cnG r ; r0n;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2nþs2

q

� �

: (5)

Hence, the half-width si allows one to tune the characteristic width of the potential map through

the half-widths of its component Gaussians
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2nþs2
i

p

. The initial fitting starts with a large s1, corre-

sponding to a diffuse potential which allows much structural mobility, and proceeds along decreas-

ing values of si, corresponding to narrower potentials with steeper gradients, so that the structure is

gradually settled into the original potential map, characterized by sL � 0~�A.

In practice, the series of cMDFF maps is generated from the original potential map using VMD’s

volutil Gaussian blur tool. Optimal values for the first half-width s1 and the change in si from one

map to the next are case-dependent. Values used in the present study were obtained through

trial and error. In general, structures far from the ideal conformation benefit from a large s1 (>5 Å)

so as to explore a large conformation space. On the other hand, if the original map has a high reso-

lution, small changes in si (<1 Å) would allow a gradual convergence required to avoid being

trapped in local potential minima. In our simulations, the change in si is initially 1 Å. A concrete

example is s1 ¼ 5 Å, s2 ¼ 4 Å, s3 ¼ 3 Å, s4 ¼ 2 Å, s5 ¼ 1 Å, s6 ¼ 0 Å. A second trial using changes

of 0.5 Å was performed (s1 ¼ 5 Å, s2 ¼ 4:5 Å, s3 ¼ 4 Å,. . ., s10 ¼ 0:5 Å, s11 ¼ 0 Å), and if the result-

ing structure of the second trial presented a better fit, then the first trial was discarded.

Resolution exchange MDFF
Replica Exchange MD (ReMD) is an advanced sampling method that explores conformational phase

space in search of conformational intermediates, which are separated by energy barriers too high to

be overcome readily by fixed temperature simulations. Instead of working with a single, fixed MD

simulation, ReMD carries out many simulations in parallel, but at different temperatures

T1 < T2 < T3 < . . . where the lowest temperature T1 is the temperature of actual interest, typically,

room temperature. The simulations of several copies of the system, the so-called replicas, run mainly

independently, such that ReMD can be easily parallellized on a computer, but at regular time points

the instantaneous conformations of replicas of neighboring temperatures are compared in terms of

energy and transitions between replicas are permitted according to the so-called Metropolis
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criterion (Sugita and Okamoto, 1999). This way the highest temperature replicas overcome the

energy barriers between conformational intermediates and through the Metropolis criterion moves

the T1 replica benefits from it such that transitions between intermediates occur frequently. The

application of the Metropolis criterion in the protocol guarantees that the conformations of the T1

replica are Boltzmann-distributed.

ReMDFF extends the concept of ReMD to MDFF by simply differentiating replicas not by temper-

atures T1 < T2 < T3 < . . ., but by the half-width parameters s1 > s2 > s3 > . . .. Numerical experi-

ments showed that ReMDFF works extremely well as documented in the present study. As NAMD

can parallelize ReMD well (Jiang et al., 2014), it can do the same for ReMDFF, such that the

enhanced sampling achieved translates into extremely fast MDFF convergence. At certain time

instances replicas i and j, of coordinates xi and xj and fitting maps of blur widths si and sj, are com-

pared energetically and exchanged with Metropolis acceptance probability

pðxi;si;xj;sjÞ ¼min 1 ; exp
�Eðxi;sjÞ�Eðxj;siÞþEðxi;siÞþEðxj;sjÞ

kBT

� �� �

; (6)

where kB is the Boltzmann constant, Eðx;sÞ is the instantaneous total energy of the configuration x

within a fitting potential map of blur width s.

MDFF protocols for b-galactosidase and TRPV1
Computational protocols for performing direct MDFF, cMDFF, and ReMDFF refinements of the two

test systems, b-galactosidase and TRPV1, are now outlined.

Direct MDFF
In order to provide a basis for comparison with cMDFF and ReMDFF, direct MDFF simulations were

performed for both b-galactosidase and TRPV1. Original published maps of resolutions 3.2 Å and

3.4 Å for b-galactosidase (EMD-5995 [Bartesaghi et al., 2014]) and TRPV1 (EMD-5778 [Liao et al.,

2013]), respectively, were fitted with search models characterized by RMSD values of 7 Å and 25 Å,

respectively, relative to the known de novo target models (PDB entries 3J7H and 3J5P, respectively);

these search models were prepared as described in Appendix 1 - Section 3. Scale factors z (Equa-

tion 1) of values 1.0 and 0.3 were employed for b-galactosidase and TRPV1, respectively, to couple

all the heavy atoms of the models to the respective maps. All other simulation parameters are noted

in Appendix 1 - Section 2. The resulting structure from each MDFF simulation was then subjected to

a final re-refinement applying a scaling factor of 1.0. Furthermore, the temperature was ramped

down from 300 K to 0 K over 30 ps and held at 0 K for an additional 1 ns. This re-refinement step

additionally improved the fitting of sidechains (McGreevy et al., 2014). Thus, all the MDFF results

reported in the present study pertain to the structures that are obtained from direct MDFF, cMDFF,

or ReMDFF simulations followed by the final re-refinement step.

cMDFF
The general simulation protocol consists of a series of consecutive MDFF simulations. The search

models for b-galactosidase and TRPV1 were first minimized over between 500 to 1000 time steps.

Next, MDFF simulation runs were sequentially performed, starting with the map of the lowest resolu-

tion, progressing through maps of successively higher resolution, and ending with the original map.

Each run was chosen to be long enough for the structure to equilibrate within the MDFF potential.

Taking advantage of the stochastic nature of MDFF simulations, multiple independent cMDFF simu-

lations (10 in the present study) were performed for each system to be fitted, generating an ensem-

ble of fitted structures. From the ensemble, the best structure was determined by the various quality

indicators described in Results. This structure was then subjected to the final re-refinement step to

allow for accurate resolution of sidechains.

For b-galactosidase, cMDFF was initiated with a map blurred with half-width s1 ¼ 5 Å. Use of 0.5

Å resolution steps produced better-fitted structures than 1 Å steps. Hence, the final simulation uti-

lized L ¼ 11 maps in total, including the original. A search model was obtained by subjecting the

published structure to a 5-ns equilibration MD run with temperature 1000 K, yielding a structure

with backbone RMSD of 7.6 Å relative to the original structure (see Appendix 1 - Section 3). 70-ps

MDFF simulations were performed at each of the 11 resolutions to achieve convergence during the
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cMDFF protocol. Simulation parameters for all these MDFF runs are identical to those used for the

direct MDFF simulations above.

For TRPV1, Gaussian blurred maps were generated starting with a half-width of s1 ¼ 5 Å, and

decreasing by 1 Å for each subsequent map, thus yielding a series of L ¼ 6 maps, including the origi-

nal. The initial structure for this case was obtained using an interactive MD protocol, described in

Appendix 1 - Section 2, to displace the ankyrin repeat region of one subunit. The resulting model

deviated from the de novo model by an RMSD of about 10 Å in the displaced region and about 25

Å in the overall structure. Unlike b-galactosidase, now, 100-ps MDFF simulations were performed at

each of the 6 resolutions to achieve convergence.

ReMDFF
ReMDFF was performed on both b-galactosidase and TRPV1 using the same search models, simula-

tion parameters, and high-resolution maps as in the cMDFF simulations. 11 and 6 replicas were

employed for b-galactosidase and TRPV1 respectively with an exchange trial interval of 1 ps. In each

case, the total energy of each replica was monitored and the simulation was run until the energies

reached a stationary level. The ReMDFF simulation was found to converge in 0.1 ns for the b-galac-

tosidase refinement, and in 0.02 ns for that of TRPV1. Finally, similar to direct MDFF and cMDFF, the

re-refinement step was performed to improve sidechain geometry.

Fluctuation analysis
The local resolutions of a density map can be computed with ResMap (Kucukelbir et al., 2014) and

used within VMD to select the atoms of a structure that are contained in a range of resolutions found

by the ResMap analysis. First, the local resolution map output by ResMap is loaded into VMD and

then the interpvol keyword can be used to automatically select the atoms found inside the volume

values specified, using interpolation. The average RMSF of each selection can then be calculated for

a structure during the steps of a MDFF simulation after the initial fitting has occured and the struc-

ture has stabilized. In principle any criteria for atom selection can be used for RMSF analysis, though

we use local resolution of the EM density here to illustrate the correlation between the two measure-

ments. Additionally, we compute a global average RMSF of the entire structure.

The ensemble-based nature of the RMSF analysis means that the quality metric is not dependent

on a single structure, but instead a large family of structures can be employed as a better represen-

tative of the data. Ensemble-based analyses are a natural and powerful benefit of the MD-based

nature of MDFF. RMSF analysis does not, however, require MDFF to be used as the method of

refinement. In principle, any refinement method can be used to obtain the fitted model. A subse-

quent short MDFF simulation of the fitted model can then be performed to obtain the data neces-

sary for the RMSF analysis.

Implementation
Incorporating advanced simulation techniques, such as multi-copy algorithms (Jiang et al., 2014),

into the MDFF protocol creates a more efficient and accurate computational strategy in cMDFF and

ReMDFF. However, these advanced simulation techniques come with an added complexity in the

setup and execution of the methods. The current implementation of these methods in NAMD

(Phillips et al., 2005) and VMD (Humphrey et al., 1996) aim to automate the steps previously dis-

cussed. The MDFF Graphical User Interface (GUI) (McGreevy et al., 2016) can be used to set up

cMDFF and ReMDFF simulations and provides default parameters, including the number and extent

of smoothed maps used for the fitting, with which to run. The parameters for the smoothed maps

and number of steps used per map are set heuristically based on previous experience and represent

an adequate initial starting point. The GUI automatically generates each of the smoothed maps and

converts them to potentials for use in the ReMDFF simulation. All parameters can be tuned by a

user to adapt the protocols to their specific system and preference. The GUI produces a series of

NAMD configuration files and scripts used for running the simulation, as well sorting and visualizing

the results in VMD. Instruction on the use of MDFF, including the GUI, is given in the tutorial found

at http://www.ks.uiuc.edu/Training/Tutorials/science/mdff/tutorial_mdff-html/.

Future development will allow for the automatic generation of the smoothed maps in NAMD at

runtime. NAMD will also analyse the dynamics of the system to determine when the simulation has
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converged and move on to fitting to the next density map in the sequence in case of cMDFF calcula-

tions. Furthermore, advanced visualization and analysis techniques in VMD (e.g. new graphical repre-

sentations) will be critical for properly understanding the RMSF analyses and to provide greater

insight when examining the quality of a model.

The use of advanced simulation techniques also comes with an added cost of computational

requirements. Adapting the algorithms to best utilize available computational hardware is key when

developing efficient methods. Fortunately, the cMDFF and ReMDFF methods and associated analy-

sis algorithms are well suited to highly efficient software implementations on contemporary multi-

core CPUs and graphics processing unit (GPU) accelerators. We observe that by storing the com-

plete cascade resolution series in efficient multi-resolution data structures such as mip maps (Wil-

liams, 1983), the MDFF cascade algorithm can access a continuously variable resolution

representation of the original cryo-EM density map, while making efficient use of CPU and GPU pro-

cessors and memory systems (Stone et al., 2007).

The parallel nature of ReMDFF presents an opportunity for efficient, automated sampling of

maps of varying resolution. However, to achieve the best efficiency, the simulations should be per-

formed on multi-core CPUs with relatively high core counts (i.e. at least 1 core per replica). Access

to such multi-core computers could prohibit use of ReMDFF, however access to machines with the

necessary hardware is easily achieved through cloud computing. The cloud computing model pro-

vides researchers with access to powerful computational equipment that would otherwise be too

costly to procure, maintain, and administer on their own. A particular obstacle is that structural

modeling often involves the use of different software suites, such as VMD (Humphrey et al., 1996)

for simulation preparation and Situs (Wriggers, 2010) for initial rigid-body docking or VMD, NAMD

(Phillips et al., 2005), and Rosetta (Leaver-Fay et al., 2011) for iterative refinement of models

(Lindert and McCammon, 2015). Cloud platforms can easily bundle different software packages

used in a modeling workflow to guarantee their availablity and interoperability on a standardized

system. Through the cloud version of our MDFF program suite a user does not need to be aware of

any of the above mentioned technical issues.

To prove the feasibility of performing ReMDFF simulations on a cloud platform, we ran ReMDFF

for the test system, carbon monoxide dehydrogenase (PDB 1OAO:chain C), on the Amazon Web

Services (AWS) Elastic Compute Cloud (EC2) platform. For the purposes of testing ReMDFF on EC2,

we ran benchmarks on a variety of compute-optimized EC2 instance types. The details of the

instance types can be found in Table 3. We used the same 6 smoothed density maps as the previ-

ously discussed cMDFF and ReMDFF simulations in the Proof of Principle and, therefore, also 6 repli-

cas. The files and information necessary to run ReMDFF on the test system using EC2 cloud

computing resources are available at (http://www.ks.uiuc.edu/Research/cloud/).
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Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L-W, Kapral GJ, Grosse-
Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC,
Zwart PH. 2010. PHENIX : a comprehensive Python-based system for macromolecular structure solution. Acta
Crystallographica Section D Biological Crystallography 66:213–221. doi: 10.1107/S0907444909052925

Afonine PV, Headd JJ, Terwilliger TC, Adams PD. 2013. New tool: phenix.real_space_refine. Computational
Crystallography Newsletter 4:43–44.

Bai XC, Yan C, Yang G, Lu P, Ma D, Sun L, Zhou R, Scheres SH, Shi Y. 2015. An atomic structure of human g-
secretase. Nature 525:212–217. doi: 10.1038/nature14892

Barad BA, Echols N, Wang RY, Cheng Y, DiMaio F, Adams PD, Fraser JS. 2015. EMRinger: side chain-directed
model and map validation for 3D cryo-electron microscopy. Nature Methods 12:943–946. doi: 10.1038/nmeth.
3541

Bartesaghi A, Matthies D, Banerjee S, Merk A, Subramaniam S. 2014. Structure of b-galactosidase at 3.2-Å
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Appendix 1

1 Theory of cascade MDFF
The MDFF potential is given by

UEMðRÞ ¼
X

i

wiVEMðriÞ; (7)

where R is the system configuration, i labels the atoms in the structure, wi and ri are weight

and position, respectively, assigned to atom i, and VEM is the potential map obtained from the

EM density map.

Subjecting the potential map VEM to a Gaussian blur increases its widths in a manner

described as follows. The Gaussian blur process produces a potential map Vs from the

potential map VEM through convolution with a normalized Gaussian of specified width s:

VsðrÞ ¼

Z

dr0Gðr ; r0;sÞVEMðr
0Þ; (8)

Gðr ; r0;sÞ ¼ AðsÞexp �
jjr� r

0jj2

2s2

 !

; (9)

AðsÞ ¼
1

ð2ps2Þ3=2
: (10)

One can characterize the resolution of VEMðrÞ explicitly by assuming that it can be written as a

sum of Gaussians.

VEMðrÞ ¼
X

n

cnGðr ; r
0
n;s

0
nÞ; (11)

where cn are weighting factors, r0n and s0
n are, respectively, the centers and widths of the

component Gaussians. Substituting the above expression into Equation 8 yields

VsðrÞ ¼

Z

dr0Gðr ; r0;sÞ
X

n

cnGðr
0 ; r0n;s

0
nÞ (12)

¼
X

n

cnAðsÞA
0
nðs

0
nÞ

Z

dr0 exp �
jjr� r

0jj2

2s2
�
jjr0� r

0
njj

2

2s02
n

 !

; (13)

Evaluation of the above expression gives

VsðrÞ ¼
X

n

Cn exp �
jjr� r

0
njj

2

2ðs2 þs02
nÞ

 !

; (14)

Cn ¼ cnAðsÞA
0
nðs

0
nÞð2pÞ

3=2 ss0
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þs02
n

q

0

B

@

1

C

A

3

(15)

¼ cn 2pðs2 þs02
nÞ

h i�3=2
: (16)

Note that setting s ¼ 0 A in (Equations 14–16) recovers the expression for the initial map in

Equation 11, i.e. V0ðrÞ ¼ VðrÞ. On the other hand, increasing s results in an increase in the
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widths of the component Gaussians, and leads in turn to an increase in the range of the MDFF

force FsðrÞ, where

FsðrÞ ¼ �rVsðrÞ (17)

¼
X

n

Cn

s2 þs02
n

exp �
jjr� r

0
njj

2

2ðs2 þs02
nÞ

 !

ðr� r
0
nÞ: (18)

2 MD simulation setup
Unless otherwise stated, all simulations reported in the present study used the following MD

parameters. MDFF simulations were run in vacuum, maintained at 300 K via a Langevin

thermostat and employed a time step of 1 fs. Secondary structure restraints were imposed

using NAMD’s Extra Bonds function to prevent loss of secondary structure due to strong

MDFF guiding forces.

MD simulations were prepared using CHARMM-GUI (Jo et al., 2008) and run under NPT

conditions, maintained at 303.15 K temperature and 1 atm pressure using a Langevin

thermostat and barostat. All systems were parametrized using the CHARMM36 force field

(Klauda et al., 2010; Best et al., 2012). Structures were solvated in explicit water (TIP3P

model) boxes, with at least 15 Å separation between structure and water box boundaries.

Particle-mesh Ewald electrostatics was used and the time step was 2 fs. For simulations of the

reported structures of b-galactosidase, backbone atoms were held fixed while a minimization

over 1000 time steps was performed, followed by 32-ns and 40-ns equilibration for the 3.2-Å

and 2.2-Å structures, respectively. Following the equilibration step, production runs of 30 ns

were performed for both structures.

In the case of TRPV1, the channel was embedded in a membrane of standard lipid

composition POPE, POPC, POPG at ratio 2:1:1. Initial runs involved minimization over 1000

steps and 1-ns equilibration of the lipid tails, with all other atoms fixed. In the following MD

run, minimization was performed over 5000 steps and equilibration was performed for 3 ns,

with protein backbone atoms held fixed. Finally, the entire system was equilibrated for a

further 6.4 ns. During the equilibration, C-terminal residues 752 to 762 were harmonically

restrained because a substantial C-terminal segment was missing in the structure.

3 Preparation of initial test structures
The initial test structure of b-galactosidase was obtained by subjecting the reported structure

(Bartesaghi et al., 2014) to a 4-ns MD simulation at a temperature of 300 K in vacuum and

using secondary structure restraints. Trajectory frames recorded at 2-ps intervals were

evaluated for backbone RMSDs with respect to the reported structure. A frame with an RMSD

value of 7.6 Å (Figure 2—figure supplement 2a) and lowest global cross-correlation with

respect to the reported map was picked to be the initial test structure. The structural quality

measure of this model is provided in Table 2. A second search model was prepared by

repeating the same protocol but at 1000 K. This search model is also characterized by an

RMSD of 7.6 Å but now features a more distorted local structure as measured in terms of

increased rotamer and Ramachandran outliers (Supplementary file 1F).

The initial test structure of TRPV1 was also derived from a reported structure (Liao et al.,

2013). In order to render the disjointed reported structure contiguous for correct structural

dynamics during simulation, the missing loop region (residues 503 to 506) was added by hand.

Additionally, the substantial ankyrin repeat region (residues 111 to 198) was removed because

the corresponding density was missing from the map. For the purpose of testing the

robustness of cMDFF and contrasting its performance with that of direct MDFF, the structure
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was distorted (see Figure 2—figure supplement 2b) during an interactive MD (Stone et al.,

2001; Grayson et al., 2003) simulation, subjecting residues 199 to 430 in one subunit’s

extramembrane domain to a series of transformations, consisting roughly of a polar angle

change of 15˚ toward the cytoplasmic pole followed by an azimuthal rotation of 30˚, so that

the backbone RMSD of the transformed region was about 22 Å relative to the original

structure.

4 Protocol efficiency
In the present study, the convergence of fitting results of TRPV1 and b-galactosidase for

different protocols can be evaluated through RMSD value employing the reported de novo

structures as reference. Figure 2—figure supplement 3 shows the time evolution of RMSD for

cMDFF, ReMDFF, and direct MDFF for the two proteins, It should be noted that the plots do

not include the final refinement step, which is the same across all three protocols.

cMDFF and ReMDFF can be seen to reach similar RMSD levels, outperforming direct MDFF.

ReMDFF converges more quickly than cMDFF in either example. Of the 6 replicas employed

for the ReMDFF of TRPV1 two resulted in poorly fitted structures, having become trapped in

density minima even after exchanging with the lowest-resolution map chosen with s = 5 Å. All

replicas can be monitored during the simulation and poorly fitted ones can be discarded by a

user. It is also worth noting that the region of the TRPV1 map to which both cMDFF and

ReMDFF successfully fitted the model, characterizes a diverse range of local resolutions from 4

Å to 6 Å challenging thus the conformational sampling capability of any flexible fitting

technique. For the same reason, this region was avoided during Rosetta refinements of TRPV1

(DiMaio et al., 2015) but is addressed now via MDFF.

5 Global vs. local measures of fit
The cross-correlation coefficient calculated over an entire structure, termed global cross-

correlation coefficient (GCC), has been a popular indicator of goodness-of-fit of a structure to

a corresponding EM density map. However, averaging over the entire structure smears out

potentially useful local structure information and in some cases, can be misleading (see

Figure 2—figure supplement 1), since GCC cannot distinguish between correct and wrong

assignments of residues to a given map region as long as the residues are equally well fitted.

Local measures of fit allow one to assess every part of the structure individually. For example,

local cross-correlation coefficients (LCCs) (Stone et al., 2014) were tracked over the course of

the cMDFF simulations of b-galactosidase and TRPV1 (Figure 2—figure supplement 4). The

improvement in LCC of the majority of residues in each case lends greater confidence in the

fitting result. At the same time, residues that have relatively lower LCCs can be identified and

given attention (Stone et al., 2014; McGreevy et al., 2016).

6 Fourier shell coefficients
Fourier Shell Coefficients (FSCs) can be used as a means of evaluating quality of fit by

comparing the degree of similarity between the original map and a simulated map derived

from the structure to be evaluated, using the simulated map feature of VMD’s MDFF package

(Trabuco et al., 2008, 2009) and the same voxel size as the original map.

In the present study, FSC curves for fitted TRPV1 and b-galactosidase structures were

calculated via the FSC operation in SPIDER (Shaikh et al., 2008) using a shell width of 0.5

reciprocal space units, and resolution cutoff of half the voxel size. In the case of TRPV1, both

the full structure and MDFF-fitted region were evaluated. The latter was obtained by applying
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a mask of the region around residues 199 to 430 in the fitted structure to the simulated map,

and in the reported structure to the original map.

As a means of summarizing comparisons by FSC, other studies have used ’integrated FSCs’, a

numerical measure obtained by integrating under the FSC plot within a predefined resolution

interval. Two integrated FSC measures, corresponding to the intervals 3.4 Å to 10 Å and 5 Å

to 10 Å, were obtained in the present study and tabulated in Table 1, and Supplementary file

1A and 1C.

7 Other simulations of b-galactosidase
Beyond the simulations reported in Table 1, further simulations were performed to explore the

performance of MDFF within the contexts of further types of analyses. The first of these

simulations was a direct MDFF simulation of the reported b-galactosidase structure, fitting

only backbone atoms to the 3.2-Å map. The fitted structure was compared to the ’refined de

novo’ structure reported in Results. It was found that EMRinger scores were lower at 2.35

when only backbone atoms were fitted, compared to 4.23 when non-hydrogen atoms were

fitted. This result suggests that even if the backbone is correctly placed, the MD force fields

alone (i.e. CHARMM36 (Best et al., 2012) here) are incapable of providing sidechain

geometries consistent with the map. Refinement of the sidechains will therefore require

explicit fitting to the density, above and beyond the orientations captured by the force fields

alone.

In the second simulation, the resulting structure of the cMDFF simulation was subjected to an

equilibrium MD simulation in explicit solvent. As shown in Figure 2—figure supplement 6, the

equilibrium RMSD fluctuations during this simulation ranged between 3.0 Å to 3.4 Å of the

starting structure. It is worth noting that these RMSD values agree well with the 3.2 Å

resolution limit of the b-galactosidase map. Thus, the result indicates that uncertainties of the

map resolution reflects quantitatively the structural variations of the cMDFF-fitted b-

galactosidase model at the room temperature. Consequently, this model is representative of

the thermodynamic ensemble that the EM map characterizes. Further analysis of the quality of

the 3.2-Å b-galactosidase model is presented in the Model Validation subsection of Results.

The third set of simulations takes advantage of a unique opportunity, presented by the

availability of two different maps of the same structure, at resolutions of 3.2 Å and 2.2 Å, to

compare the results of fitting b-galactosidase to maps of different resolutions. The reported

structures were subjected to direct MDFF simulation for 0.7 and 1 ns for the 3.2-Å and 2.2-Å

models, respectively. The RMSF for each residue is calculated over consecutive 10-ps windows

during the fitting. The RMSF values for all residues, including those for the PETG binding

pockets (Bartesaghi et al., 2015) are plotted in Figure 4—figure supplement 4, reflecting

smaller fluctuations during the fitting to the 2.2-Å map than in the 3.2-Å one. The relationship

between fluctuation and map quality is examined in greater detail in Results, and imply that

the RMSF of the fitted structure correlates negatively with the resolution of the corresponding

map. Thus, the smaller fluctuations of the 2.2 Å structure than those of the 3.2 Å one further

validate our proposed RMSF-map quality relationship of Figure 4.

8 MDFF refinement for TRPV1
Similar to the b-galactosidase results in Table 1, the refinement of TRPV1 was significantly

better with cMDFF and ReMDFF than with direct MDFF, but starting with much poorer search

models than what were employed for the b-galactosidase refinements. The TRPV1 refinement

results are summarized in Supplementary file 1A: (i) RMSD of the fitted structure with respect

to the reported de novo structure is 7.9 Å for direct MDFF, higher than the 2.4 Å and 2.5 Å

RMSD values for cMDFF and ReMDFF, respectively (Figure 2—figure supplement 3b); (ii)
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EMRinger scores for cMDFF and ReMDFF are 1.68 and 1.99 respectively, higher than the 1.51

score obtained for direct MDFF; (iii) MolProbity scores (Chen et al., 2010) are 2.4 and 2.5 for

cMDFF and ReMDFF, smaller than the 7.9 score for direct MDFF, implying fewer, less severe

steric clashes and fewer poor rotamers in the former than in the latter; (iv) integrated FSC

(iFSC2, for the range 3.4-10 Å obtained as described in Appendix 1 - Section 6 above), attains

higher values of 2.62 and 2.75 for cMDFF and ReMDFF respectively, than the 1.79 value for

direct MDFF. iFSC1, corresponding to the lower resolution range of 5-10 Å is found to behave

similarly to iFSC2; and (v) GCCs improve from an initial value of 0.16 to 0.50, 0.54 and 0.53 for

direct, cMDFF, and ReMDFF protocols, respectively. Similarly, typical residue LCC values

improve from 0 to 0.5 or higher, as shown in Figure 2—figure supplement 4b.

Measures of structural quality for the above fits are tabulated in Supplementary file 1B.

Cross-validation with half-maps was also performed on the cMDFF structure, as per the b-

galactosidase simulations, to ensure that it was not overfitted. As in the case of b-

galactosidase, iFSC and EMRinger scores for direct and cross comparisons were similar. FSC

analysis results are described in Appendix 1 - Section 11.

9 MDFF fitting of TRPV1 TM domain
Noting that the transmembrane (TM) region of the TRPV1 map is better resolved than the map

for the extramembrane region, we performed 200 ps of MDFF on a truncated TM portion of

the structure (residues 381 to 695) to characterize the performance of MDFF in the

transmembrane region alone.

The TM region had previously been refined employing Rosetta tools (Leaver-Fay et al.,

2011), providing an opportunity for comparison. Two MDFF simulations were performed, the

first with only non-hydrogen sidechain atoms coupled to the density and harmonic restraints

holding backbone atoms in the configuration of the reported structure (Liao et al., 2013) and

another with all non-hydrogen atoms coupled to the density and the backbone restraints

removed.

MDFF characteristics for fitting the isolated TM region of TRPV1 are summarized in

Supplementary file 1C. Quality of fit measures, namely EMRinger and iFSC, for the backbone-

restrained simulations were lower than those of the Rosetta-derived structure. However,

MolProbity scores for the MDFF-derived structures are better than those of Rosetta. Allowing

the backbone to be fitted into the map without restraints from the reported structure

substantially improved the quality of fit measures so that they are comparable to those of

Rosetta’s, while maintaining a lower MolProbity score.

10 RMSF as a local measure of map quality
Per-residue Root mean square fluctuation (RMSF) has been found to be a good local measure of

model fit, decreasing in relation to the increasing quality of fit over a cMDFF simulation, as

illustrated in Figure 4—figure supplement 1. In addition to being a measure of fit, RMSF

values can also be used for the analysis of local map quality. When monitored during MDFF

refinement simulations, RMSF values serve as a good measure of local map quality, decreasing

linearly with increase in local map resolution, as demonstrated in a number of test cases

(Figure 4), including the 20S proteasome (Figure 4—figure supplement 3). In contrast to

RMSF, other local measures of fit, such as LCC and EMRinger scores, are not necessarily good

indicators of local map quality, as is evident from their poor correlation with local map

resolution in Figure 4—figure supplement 2.
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11 Cross-validation of MDFF-fitted structures
To demonstrate that the over-fitting does not occur during MDFF refinements, which is also

fairly representative of cMDFF and ReMDFF refinements, the reported de novo structures of

b-galactosidase and TRPV1 were each directly fitted to two half-maps (labelled 1 and 2) of the

corresponding reported EM map, (Bartesaghi et al., 2014) for b-galactosidase and

(Liao et al., 2013) for TRPV1. Subsequently, simulated maps were created from the fitted

structures using VMD’s MDFF plugin and resolution settings equivalent to the reported maps.

In total, there were two simulated maps, also with labels 1 and 2 corresponding to the half-

map from which the fits were obtained, for each protein. FSC plots describing the direct

comparison of simulated maps with the corresponding half-maps (e.g. simulated map 1 with

half-map 1) as well as the cross comparison of simulated maps with the non-corresponding

half-maps (e.g. simulated map 1 with half-map 2) were created. Figure 2—figure supplement

8 show the plots for b-galactosidase and TRPV1, respectively. The high degree of similarity

between the cross comparisons as well as between cross comparisons and direct comparisons

indicate a very low degree of over-fitting. In fact, iFSC values calculated for the plots (see

Figures) are practically uniform. EMRinger scores for the same sets of comparisons were also

calculated. For b-galactosidase, the EMRinger scores were 3.25 for simulated map 1 against

half-map 1, 2.97 for simulated map 2 against half-map 2, 2.92 for simulated map 1 against

half-map 2, and 2.81 for simulated map 2 against half-map 1; these numbers are fairly

comparable to the EMRinger scores with the full maps as presented in Table 1. For TRPV1

again, the EMRinger scores were 1.43 for all comparisons. The high degree of similarity

between EMRinger scores for the different comparisons corroborates the favorable conclusion

drawn from the FSC calculations.
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