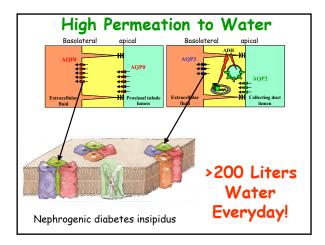
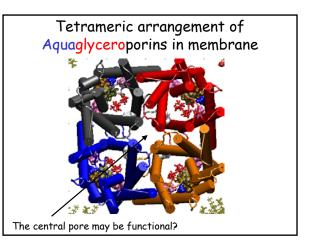
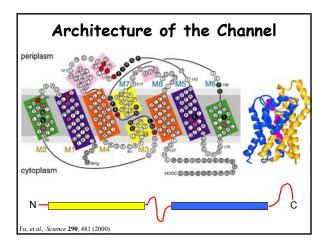
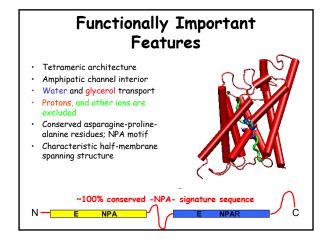
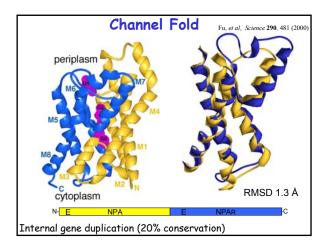

Structure of a PDB file							le			
index	re name	esna		chain 1	resid	×,	y z		segn	ame
ATOM	22	N	ALA	в 3	-4.073	-7.587	-2.708	1.00	0.00	BH
ATOM	23	HN	ALA	в 3	-3.813	-6.675	-3.125	1.00	0.00	BH
ATOM	24	CA	ALA	в 3	-4.615	-7.557	-1.309	1.00	0.00	BH
ATOM	25	HA	ALA	в 3	-4.323	-8.453	-0.704	1.00	0.00	BH
ATOM	26	CB	ALA	в 3	-4.137	-6.277	-0.676	1.00	0.00	BH
ATOM	27	HBl	ALA	в 3	-3.128	-5.950	-0.907	1.00	0.00	BH
ATOM	28	HB2	ALA	в 3	-4.724	-5.439	-1.015	1.00	0.00	BH
ATOM	29	HB3	ALA	в 3	-4.360	-6.338	0.393	1.00	0.00	BH
ATOM	30	С	ALA	в 3	-6.187	-7.538	-1.357	1.00	0.00	BH
ATOM	31	0	ALA	в 3	-6.854	-6.553	-1.264	1.00	0.00	BH
ATOM	32	N	ALA	в 4	-6.697	-8.715	-1.643	1.00	0.00	BH
ATOM	33	HN	ALA	в 4	-6.023	-9.463	-1.751	1.00	0.00	BH
ATOM	34	CA	ALA	в 4	-8.105	-9.096	-1.934	1.00	0.00	BH
ATOM	35	HA	ALA	в 4	-8.287	-8.878	-3.003	1.00	0.00	BH
ATOM	36	CB	ALA	в 4	-8.214	-10.604	-1.704	1.00	0.00	BH
ATOM	37	HB1	ALA	в 4	-7.493	-11.205	-2.379	1.00	0.00	BH
ATOM	38	HB2	ALA	в 4	-8.016	-10.861	-0.665	1.00	0.00	BH
ATOM	39	HB3	ALA	в 4	-9.245	-10.914	-1.986	1.00	0.00	BH
ATOM	40	С	ALA	в 4	-9.226	-8.438	-1.091	1.00	0.00	BH
ATOM	41	0	ALA	в 4	-10.207	-7.958	-1.667	1.00	0.00	BH
00000	00000000	0000	0000	000000	00000000000000	000000000	000000000	000000	00000000	000000
	10		20		30	40	50		60	70

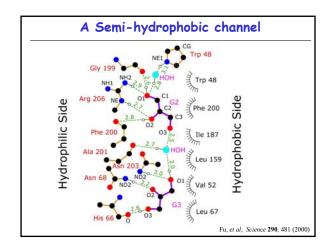


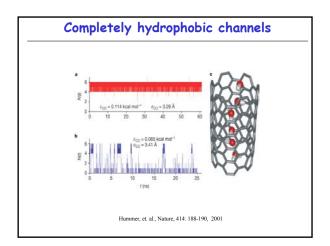


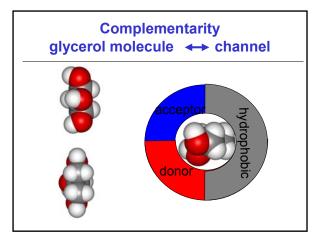


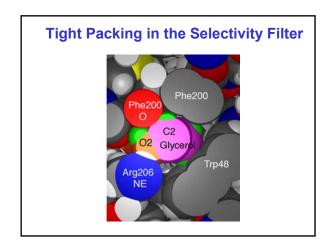

Aquo	aporins in	Human	Body
Aquaporin	0 Eye: lens fiber cells	Fluid balance of the lens	
Aquaporin-	1 Red blood cells Kidney: proximal tubules Eye: ciliary epithelium Brain: choriod plexus Lung: alveolar epithelial cells	Osmotic protection Concentration of urine Aqueous humor Production of CSF Alveolar hydration	
Aquaporin	2 Kidney: collecting ducts	ADH hormone activity	
Aquaporin	3 Kidney: collecting ducts Trachea: epithelial cells	Reabsorption of water Secretion of water	
Aquaporin	4 Kidney: collecting ducts Brain: ependymal cells Brain: hypothalamus Lung: bronchial epithelium	Reabsorption of water CSF fluid balance Osmosensing function? Bronchial fluid secretion	
Aquaporin	5 Salivary glands Lacrimal glands	Production of saliva Production of tears	
Aquaporin	6 Kidney	Very low water permeability!	
Aquaporin	7 Testis and sperm		
Aquaporin	8 Testis, pancreas, liver		
Aquaporin	9 Leukocytes		
Aquaporin	10		

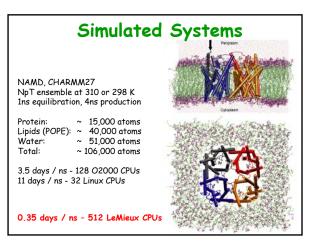


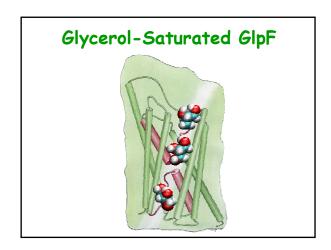


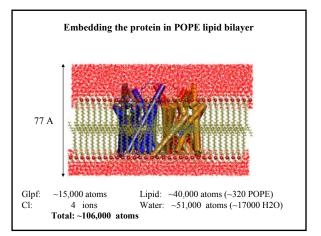


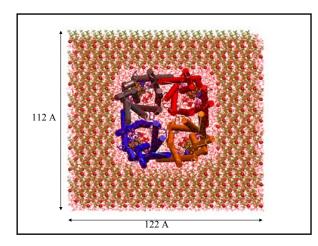


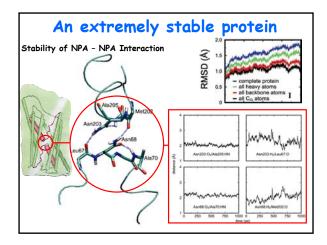


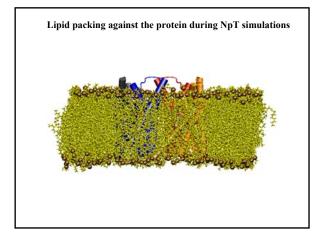


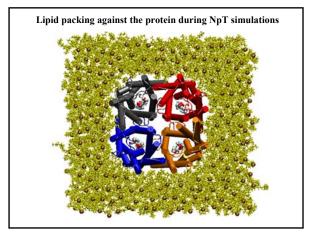


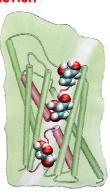


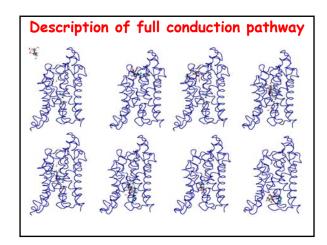


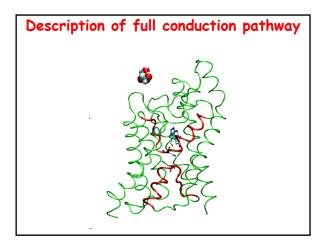




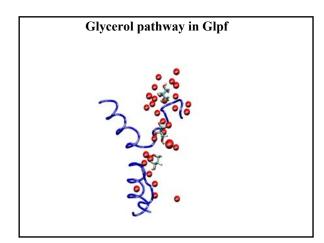


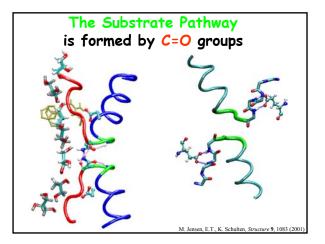


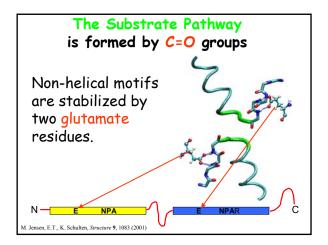


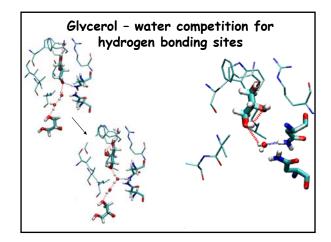


Glycerol Conduction


- Spontaneous glycerol conduction on ns time scale;
- Conduction occurs independently in each monomer;
- Exposed backbone carbonyl oxygen atoms dictate the glycerol and water pathway; this explains the non-helical secondary structure in the aquaporin family;
- Glycerol resides at the positions of conserved motif for the longest time during simulation = minimum energy sites;
- Water molecules are essential for the glycerol transport.







Cł	anr	nel Hy	/dro	oge	n Bondi	ng Sites
GLN TRP GLY ALA HIS LEU ASN GLY SER TYR ASN HIS THR GLY PRO	41 48 64 65 66 67 68 130 133 136 138 139 140 142 167 195 196	OE1 NE2 O NE1 O O O ND2 OD1 O O O O O N OD1 ND2 ND1 OG1 O O O O O O O O O O O O O O O O O	LEU THR GLY PHE ALA ASN LYS GLN HIS ASN HIS GLY ASN ARG	197 198 199 200 201 203 33 41 48 66 68 138 140 142 199 203 206	0 0 0 0 ND2 HZ1 HZ3 HE21 HE1 HD1 HD22 HD1 HD22 HD1 HD22 HD1 HN HN HD21 HD22 HD1 HN HN HD21HD22 HE HH21HH22	

