Problem Set 3 Physics498:Theoretical Biophysics /Spring 2001 Professor Klaus Schulten

Note on Term Papers:

In order to schedule appointments with Prof. Schulten to discuss the term projects chosen by you please send email to markus@ks.uiuc.edu with your preferred time and the project you have chosen. The available days are Thursday (03/29), Friday(03/30) or next week from 8pm-10pm in Prof. Schulten's office (Beckman Rm 3147).

Problem 1: Verhulst Equation

Consider the evolution equation

$$\dot{x} = x - x^2 \tag{1}$$

that describes the potential V(t) = x of a neuron.

(a) Determine the stationary points x_{1s} , x_{2s} and the behaviour of the solution in linear approximation x_{1s} , $x_{2s} = a$, $\delta x = x - a$, $f(x) = x - x^2$

$$\delta \dot{x} = f(a) + \partial_x f|_a \delta x \tag{2}$$

- (b) Derive the exact solution of eq.(1) for arbitrary initial condition $x(0) = x_0$. Compare the result with the approximation considered in (a).
- (c) For a numerial solution of eq. (1) one discretizes the time-derivative in eq.(1) through $(x_{n+1} x_n)/\Delta t$ for $t \to t_n = n\Delta t$ and $x_n = x(t_n)$. Assume that the differential equation (1) is replaced by

$$x_{n+1} - x_n = h(x_{n+1} - x_n x_{n+1}) (3)$$

Show that the solution of this equation is

$$x_n^{-1} = 1 - (1 - x_0^{-1})(1 - h)^n (4)$$

Discuss the behaviour of this solution for $h > 0, h \to 0$ and for h < 1 and $h \ge 1$.

Problem 2: Limit Cycle

Discuss the solution of the equation

$$\dot{x} = y + xf(r)
\dot{y} = -x + yf(r)$$
(5)

 $(r=\sqrt{x^2+y^2})$ for the functions $f(r)=(1-r^2),\,(r^2-1)$ and $(r^2-1)^2.$ (Hint: Use polar coordinates).

Problem 3: Bonhoefer-van der Pol Equation

Consider the solution of the evaluation equation (c = 3, a = 0.7, b = 0.8)

$$\dot{x}_1 = c(x_2 + x_1 - \frac{x_1^3}{3} + z) = f_1(x_1, x_2)
\dot{x}_2 = -\frac{1}{c}(x_1 + bx_2 - a) = f_2(x_1, x_2)$$
(6)

- (a) Discuss the stationary point \mathbf{x}_s of this system of equations in the range $-2 \le z \le 2$, i.e $\mathbf{f}(\mathbf{x}_s) = 0$.
- (b) For z=0 and z=-0.4 carry out a linear stability analysis, i.e. solve the equation $(\delta \mathbf{x} = \mathbf{x} \mathbf{x}_s)$

$$\delta \dot{\mathbf{x}} = \mathbf{M} \delta \mathbf{x} \tag{7}$$

for $M_{jk} = \partial_k f_j(\mathbf{x}_s)$. For this purpose expand the solutions in terms of the eigenvectors of \mathbf{M} .

Note: The eigenvectors for different eigenvalues may not be orthogonal!

(c) Determine typical trajectories $\mathbf{x}(t)$ for z=0 and z=-0.4 for a variety of initial points $\mathbf{x}(0)$. For this purpose discretize the system eqs. (6) in the form

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \Delta t f(\mathbf{x}_n) \tag{8}$$

for suitable Δt . Plot the result.

(d) Consider now eq. (8) in the form

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \Delta t f(\mathbf{x}_n) + \sigma \sqrt{\Delta t} \begin{pmatrix} \zeta_1(n) \\ \zeta_2(n) \end{pmatrix}$$
 (9)

for $\sigma=0.15$ and for random numbers $\zeta_1(n)$, $\zeta_2(n)$ that are Gaussian distributed, i.e. $p(\zeta_i)=1/\sqrt{2\pi}\exp{[-\zeta_i^2]}$. Plot the results.

Problem 4: Cable Equation

Solve the cable equation

$$(\partial_t - \partial_x^2 + 1)v(x, t) = 0 (10)$$

for $x \in [0, a]$, the boundary conditions

$$\partial_x v = 0, \quad x = 0 \tag{11}$$

$$v(a) = 0 (12)$$

and the initial condition

$$v(x,0) = \delta(x) . (13)$$

For this purpose expand the solutions in terms of eigenfunctions of ∂_x^2 that obey the boundary conditions, i.e.

$$f_n(x) = \sqrt{\frac{2}{a}} \cos \frac{\pi nx}{2a} \tag{14}$$

n=1,3,5,..., i.e. set $v(x,t)=\sum_{n=1,3,5,...}\alpha_n(t)f_n(x)$. Determine the $\alpha_n(t)$ that obey the initial condition eq. (13). Plot the result.

Due Thursday April 5th in class