Problem Set 2

Physics498: Theoretical Biophysics /Spring 2002 Professor Klaus Schulten

Problem 1: Verhulst Equation

Consider the evolution equation

$$
\begin{equation*}
\dot{x}=x-x^{2} \tag{1}
\end{equation*}
$$

that describes the potential $V(t)=x$ of a neuron.
(a) Determine the stationary points $x_{1 s}, x_{2 s}$ and the behaviour of the solution in linear approximation $x_{1 s}, x_{2 s}=a, \delta x=x-a, f(x)=x-x^{2}$

$$
\begin{equation*}
\delta \dot{x}=f(a)+\left.\partial_{x} f\right|_{a} \delta x \tag{2}
\end{equation*}
$$

(b) Derive the exact solution of eq.(1) for arbitrary initial condition $x(0)=x_{0}$. Compare the result with the approximation considered in (a).
(c) For a numerial solution of eq. (1) one discretizes the time-derivative in eq.(1) through $\left(x_{n+1}-x_{n}\right) / \Delta t$ for $t \rightarrow t_{n}=n \Delta t$ and $x_{n}=x\left(t_{n}\right)$. Assume that the differential equation (1) is replaced by

$$
\begin{equation*}
x_{n+1}-x_{n}=h\left(x_{n+1}-x_{n} x_{n+1}\right) \tag{3}
\end{equation*}
$$

Show that the solution of this equation is

$$
\begin{equation*}
x_{n}^{-1}=1-\left(1-x_{0}^{-1}\right)(1-h)^{n} \tag{4}
\end{equation*}
$$

Discuss the behaviour of this solution for $h>0, h \rightarrow 0$ and for $h<1$ and $h \geq 1$.

Problem 2: Limit Cycle

Discuss the solution of the equation

$$
\begin{align*}
\dot{x} & =y+x f(r) \\
\dot{y} & =-x+y f(r) \tag{5}
\end{align*}
$$

$\left(r=\sqrt{x^{2}+y^{2}}\right)$ for the functions $f(r)=\left(1-r^{2}\right),\left(r^{2}-1\right)$ and $\left(r^{2}-1\right)^{2}$. (Hint: Use polar coordinates).

Problem 3: Bonhoefer-van der Pol Equation

Consider the solution of the evaluation equation ($c=3, a=0.7, b=0.8$)

$$
\begin{align*}
& \dot{x}_{1}=c\left(x_{2}+x_{1}-\frac{x_{1}^{3}}{3}+z\right)=f_{1}\left(x_{1}, x_{2}\right) \\
& \dot{x}_{2}=-\frac{1}{c}\left(x_{1}+b x_{2}-a\right)=f_{2}\left(x_{1}, x_{2}\right) \tag{6}
\end{align*}
$$

(a) Discuss the stationary point \mathbf{x}_{s} of this system of equations in the range $-2 \leq z \leq 2$, i.e $\mathbf{f}\left(\mathbf{x}_{s}\right)=0$.
(b) For $z=0$ and $z=-0.4$ carry out a linear stability analysis, i.e. solve the equation ($\delta \mathbf{x}=\mathbf{x}-\mathbf{x}_{s}$)

$$
\begin{equation*}
\delta \dot{\mathbf{x}}=\mathbf{M} \delta \mathbf{x} \tag{7}
\end{equation*}
$$

for $M_{j k}=\partial_{k} f_{j}\left(\mathbf{x}_{s}\right)$. For this purpose expand the solutions in terms of the eigenvectors of \mathbf{M}.
Note: The eigenvectors for different eigenvalues may not be orthogonal!
(c) Determine typical trajectories $\mathbf{x}(t)$ for $z=0$ and $z=-0.4$ for a variety of initial points $\mathbf{x}(0)$. For this purpose discretize the system eqs. (6) in the form

$$
\begin{equation*}
\mathbf{x}_{n+1}=\mathbf{x}_{n}+\Delta t f\left(\mathbf{x}_{n}\right) \tag{8}
\end{equation*}
$$

for suitable Δt. Plot the result.
(d) Consider now eq. (8) in the form

$$
\begin{equation*}
\mathbf{x}_{n+1}=\mathbf{x}_{n}+\Delta t f\left(\mathbf{x}_{n}\right)+\sigma \sqrt{\Delta t}\binom{\zeta_{1}(n)}{\zeta_{2}(n)} \tag{9}
\end{equation*}
$$

for $\sigma=0.15$ and for random numbers $\zeta_{1}(n), \zeta_{2}(n)$ that are Gaussian distributed, i.e. $p\left(\zeta_{i}\right)=1 / \sqrt{2 \pi} \exp \left[-\zeta_{i}^{2}\right]$. Plot the results.

Problem 4: Cable Equation

Solve the cable equation

$$
\begin{equation*}
\left(\partial_{t}-\partial_{x}^{2}+1\right) v(x, t)=0 \tag{10}
\end{equation*}
$$

for $x \in[0, a]$, the boundary conditions

$$
\begin{align*}
\partial_{x} v & =0, \quad x=0 \tag{11}\\
v(a) & =0 \tag{12}
\end{align*}
$$

and the initial condition

$$
\begin{equation*}
v(x, 0)=\delta(x) \tag{13}
\end{equation*}
$$

For this purpose expand the solutions in terms of eigenfunctions of ∂_{x}^{2} that obey the boundary conditions, i.e.

$$
\begin{equation*}
f_{n}(x)=\sqrt{\frac{2}{a}} \cos \frac{\pi n x}{2 a} \tag{14}
\end{equation*}
$$

$n=1,3,5, \ldots$, i.e. set $v(x, t)=\sum_{n=1,3,5, \ldots} \alpha_{n}(t) f_{n}(x)$. Determine the $\alpha_{n}(t)$ that obey the initial condition eq. (13). Plot the result.

Due Thursday April 18th in class

