Solution to Problem Set
 Physics 498TBP
 by Sinan Arslan

1 Verhulst Equation

(a)

At the stationary points $a=x_{1 s, 2 s}$, the time derivative of x vanishes, i.e.,

$$
\begin{align*}
x-x^{2} & =0, \tag{1}\\
x_{1 s} & =0, \tag{2}\\
x_{2 s} & =1 . \tag{3}
\end{align*}
$$

The linear approximation of equation (1, homework) around $x=a=x_{1 s, 2 s}$ is

$$
\begin{align*}
\delta \dot{x} & =f(a)+\left.\partial_{x} f\right|_{a} \delta x, \tag{4}\\
& =(1-2 a) \delta x . \tag{5}
\end{align*}
$$

Solution for this equation is

$$
\begin{equation*}
\delta x(t)=\delta x(0) e^{(1-2 a) t} . \tag{6}
\end{equation*}
$$

and its behavior around the stationary points is

$$
\delta x(t)= \begin{cases}\delta x(0) e^{t} & x_{1 s}=0 \tag{7}\\ \delta x(0) e^{-t} & x_{2 s}=1\end{cases}
$$

In the first case $x(t)$ moves away from $x_{1 s}=0$ and in the second case it gets closer to the $x_{2 s}=1$. Accordingly $x_{1 s}$ and $x_{2 s}$ are stable and unstable stationary points, respectively.
(b)

The exact solution of the equation

$$
\begin{equation*}
\frac{d x}{d t}=x-x^{2} \tag{8}
\end{equation*}
$$

can be derived by writing

$$
\begin{equation*}
\frac{d x}{x-x^{2}}=d t \tag{9}
\end{equation*}
$$

and integrating both sides

$$
\begin{equation*}
\int_{x(0)}^{x(t)} \frac{d x}{x-x^{2}}=\int_{0}^{t} d t \tag{10}
\end{equation*}
$$

From this follows

$$
\begin{align*}
\int_{x(0)}^{x(t)} d x\left(\frac{1}{x}+\frac{1}{1-x}\right) & =t, \tag{11}\\
\log x-\left.\log (1-x)\right|_{x_{0}} ^{x(t)} & =t, \tag{12}\\
\log \frac{x(t)}{1-x(t)}-\log \frac{x_{0}}{1-x_{0}} & =t, \tag{13}\\
\frac{x(t)}{1-x(t)} & =\frac{x_{0}}{1-x_{0}} e^{t} . \tag{14}
\end{align*}
$$

One can reorganize the equation (14) to obtain the solution for $x(t)$,

$$
\begin{equation*}
x(t)=\frac{x_{0}}{x_{0}+\left(1-x_{0}\right) e^{-t}} . \tag{15}
\end{equation*}
$$

The behavior of the solution around the stationary points can be obtained by expanding it near stationary points. For $x \approx 1$, one can express $\delta x(t)=x(t)-1$ from the equation (15),

$$
\begin{equation*}
\delta x(t)=\frac{\left(x_{0}-1\right) e^{-t}}{x_{0}+\left(1-x_{0}\right) e^{-t}} . \tag{16}
\end{equation*}
$$

For small values of $\delta x(0)=x_{0}-1$ and $\delta x(t)=x(t)-1$, equation (16),

$$
\begin{equation*}
\delta x(t)=\frac{\delta x(0) e^{-t}}{1+\delta x(0)-\delta x(0) e^{-t}} \tag{17}
\end{equation*}
$$

can be expanded as follows

$$
\begin{equation*}
\delta x(t) \approx \delta x(0) e^{-t}\left(1-\delta x(0)+\delta x(0) e^{-t}\right) \approx \delta x(0) e^{-t} . \tag{18}
\end{equation*}
$$

Similarly one can derive for $x(t) \approx 0$ and $\delta x(0)=x_{0}-0$,

$$
\begin{equation*}
\delta x(t) \approx \delta x(0) e^{t} \tag{19}
\end{equation*}
$$

Equations (18) and (19) are identical to those derived in section (a).
(c)

We can rewrite equation (3, homework) as

$$
\begin{equation*}
x_{n+1}=\frac{x_{n}}{(1-h)+h x_{n}} . \tag{20}
\end{equation*}
$$

From this follows

$$
\begin{equation*}
x_{n+1}^{-1}-1=(1-h) x_{n}^{-1}+h-1, \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{n+1}^{-1}-1=(1-h)\left(x_{n}^{-1}-1\right) . \tag{22}
\end{equation*}
$$

We can now define a new variable, $u_{n}=x_{n}^{-1}-1$, so that the recursion relation can be simplified as follows:

$$
\begin{equation*}
u_{n}=(1-h) u_{n-1} . \tag{23}
\end{equation*}
$$

The solution of this equation is

$$
\begin{equation*}
u_{n}=(1-h)^{n} u_{0} . \tag{24}
\end{equation*}
$$

The answer we seek is obtained by switching back to x_{n},

$$
\begin{equation*}
x_{n}^{-1}=1-\left(1-x_{0}^{-1}\right)(1-h)^{n} . \tag{25}
\end{equation*}
$$

From this equation one can see that x_{n} coverges to 1 , i.e., $\lim _{n \rightarrow \infty} x_{n}=1$ for $1 \geq h>0 . x_{n}$ still tends to 1 for $2>h \geq 1$, but it oscillates around 1 , so probably $h \geq 1$ is not a good approximation although it still converges to 1 .

Replacing n with t / h and x_{n} with $x(t)$ in the equation (25) yields

$$
\begin{equation*}
x(t)=\frac{1}{1-\left(1-x_{0}^{-1}\right)(1-h)^{t / h}} . \tag{26}
\end{equation*}
$$

The term $(1-h)^{t / h}$ becomes e^{-t} in the limit where $h \rightarrow 0$. One can prove this in the following way:

$$
\begin{align*}
\lim _{h \rightarrow 0}(1-h)^{t / h} & =\exp \left[\log \left(\lim _{h \rightarrow 0}(1-h)^{t / h}\right)\right], \tag{27}\\
& =\exp \left[\lim _{h \rightarrow 0} \log (1-h)^{t / h}\right] \tag{28}\\
& =\exp \left[\lim _{h \rightarrow 0} \frac{\log (1-h)}{\frac{h}{t}}\right] . \tag{29}
\end{align*}
$$

One can use l'Hospital's Rule, since both the numerator and the denominator in the equation (29) is zero when $h=0$.

$$
\begin{align*}
\lim _{h \rightarrow 0}(1-h)^{t / h} & =\exp \left[\lim _{h \rightarrow 0} \frac{\frac{\partial}{\partial_{h}} \log (1-h)}{\frac{\partial}{\partial_{h}} \frac{h}{t}}\right], \tag{30}\\
& =\exp \left[\lim _{h \rightarrow 0} \frac{\frac{-1}{(1-h)}}{\frac{1}{t}}\right] \tag{31}\\
& =\exp [-t] \tag{32}
\end{align*}
$$

Hence the equation (26) becomes

$$
\begin{equation*}
x(t)=\frac{x_{0}}{x_{0}+\left(1-x_{0}\right) e^{-t}} . \tag{33}
\end{equation*}
$$

in the limit where $h \rightarrow 0$. Equation (33) is same as the exact solution we obtained in section (b).

2 Limit Cycle

Equation (5, homework) can be expressed in polar coordinates by using the substitutions

$$
\begin{align*}
x & =r \cos \theta, \tag{34}\\
y & =r \sin \theta, \tag{35}\\
\dot{x} & =\dot{r} \cos \theta-r \sin \theta \dot{\theta}, \tag{36}\\
\dot{y} & =\dot{r} \sin \theta+r \cos \theta \dot{\theta} . \tag{37}
\end{align*}
$$

Thus the equation (5 , homework) in polar coordinates becomes

$$
\begin{align*}
\dot{r} \cos \theta-r \sin \theta \dot{\theta} & =r \sin \theta+r \cos \theta f(r), \tag{38}\\
\dot{r} \sin \theta+r \cos \theta \dot{\theta} & =-r \cos \theta+r \sin \theta f(r) . \tag{39}
\end{align*}
$$

By multiplying both sides of the equations (38) and (39) by $\cos \theta$ and $\sin \theta$, respectively, then adding them, one obtains

$$
\begin{equation*}
\dot{r}=r f(r) \tag{40}
\end{equation*}
$$

Similarly one can derive

$$
\begin{equation*}
\dot{\theta}=-1 . \tag{41}
\end{equation*}
$$

Equation (41) means that the system $\{x(t), y(t)\}$ rotates around origin with a constant angular velocity -1 . We can now find the solutions of equation (40) for three cases of $f(r)$.

For $f(r)=1-r^{2}$, equation (40) becomes

$$
\begin{equation*}
\frac{d r}{d t}=r\left(1-r^{2}\right) \tag{42}
\end{equation*}
$$

One can write this equation as

$$
\begin{equation*}
d r\left(\frac{1}{r}+\frac{1}{2}\left(\frac{1}{1-r}-\frac{1}{1+r}\right)\right)=d t . \tag{43}
\end{equation*}
$$

Carrying out the integral on both sides

$$
\begin{equation*}
\int_{r_{0}}^{r(t)} d r\left(\frac{1}{r}+\frac{1}{2}\left(\frac{1}{1-r}-\frac{1}{1+r}\right)\right)=\int_{0}^{t} d t^{\prime} \tag{44}
\end{equation*}
$$

yields

$$
\begin{align*}
\log r+\left.\frac{1}{2}(-\log (1-r)-\log (1+r))\right|_{r_{0}} ^{r(t)} & =t \tag{45}\\
\log r-\left.\frac{1}{2} \log \left(1-r^{2}\right)\right|_{r_{0}} ^{r(t)} & =t \tag{46}\\
\log \frac{r}{\left.\sqrt{\left(1-r^{2}\right)}\right|_{r_{0}} ^{r(t)}} & =t \tag{47}\\
\log \frac{r(t)}{\sqrt{1-r^{2}(t)}}-\log \frac{r_{0}}{\sqrt{1-r_{0}^{2}}} & =t \tag{48}\\
\frac{r(t)}{\sqrt{1-r^{2}(t)}} & =\frac{r_{0}}{\sqrt{1-r_{0}^{2}}} e^{t} \tag{49}
\end{align*}
$$

This expression can be reorganized to get

$$
\begin{equation*}
r(t)=\frac{r_{0}}{\sqrt{r_{0}^{2}+\left(1-r_{0}^{2}\right) e^{-2 t}}} . \tag{50}
\end{equation*}
$$

From equation (50), one can see that $r(t)$ converges to 1 regardless of the initial condition, except $r_{0}=0$. Eventually the system begins to move on a circle of radius 1 . On the other hand $r=0$ is an unstable stationary point: if the initial condition is $r_{0}=0, r(t)$ does not change in time, but for $r_{0}>1$, it moves to 1 .

For $f(r)=r^{2}-1$, we get the same solution as above if we replace t with $-t$. Therefore the solution is

$$
\begin{equation*}
r(t)=\frac{r_{0}}{\sqrt{r_{0}^{2}+\left(1-r_{0}^{2}\right) e^{2 t}}} \tag{51}
\end{equation*}
$$

The behavior of this solution for different initial conditions can be summarized:

$$
\lim _{t \rightarrow \infty} r(t)= \begin{cases}\infty & r_{0}>1 \tag{52}\\ 1 & r_{0}=1 \\ 0 & r_{0}<1\end{cases}
$$

This tells us that the points on the circle of radius $r=1$ and whose center at the origin are unstable stationary points whereas the origin, $r=0$ is a stable stationary point.

In case of $f(r)=\left(1-r^{2}\right)^{2}$ the equation (40) reads

$$
\begin{equation*}
\frac{d r}{d t}=r\left(1-r^{2}\right)^{2} \tag{53}
\end{equation*}
$$

Gathering each variable on the both sides separately and integrating yields

$$
\begin{equation*}
\int_{r_{0}}^{r(t)} \frac{d r^{2}}{2 r^{2}\left(1-r^{2}\right)^{2}}=\int_{0}^{t} d t^{\prime} \tag{54}
\end{equation*}
$$

By using the substitutions

$$
\begin{align*}
r^{2} & =\frac{R}{(R-1)} \tag{55}\\
d r^{2} & =-\frac{d R}{(1-R)^{2}} \tag{56}
\end{align*}
$$

one can get

$$
\begin{align*}
\int_{R_{0}}^{R(t)}\left(\frac{1}{R}-1\right) d R & =2 t \tag{57}\\
\log R-\left.R\right|_{R_{0}} ^{R(t)} & =2 t \tag{58}\\
\left.\log \frac{R}{e^{R}}\right|_{R_{0}} ^{R(t)} & =2 t \tag{59}\\
\frac{R(t)}{e^{R(t)}} & =\frac{R_{0}}{e^{R_{0}}} e^{2 t} \tag{60}
\end{align*}
$$

Let us call this function $G(r)$, then the solution is

$$
\begin{equation*}
G(R(t))=\frac{R(t)}{e^{R(t)}}=\frac{R_{0}}{e^{R_{0}}} e^{2 t} \tag{61}
\end{equation*}
$$

where $R(t)=r(t)^{2} /\left(r^{2}(t)-1\right)$. From equation (61), one can see that $G(R)$ has always the tendency to increase in time for positive initial values $G\left(R_{0}\right)>0$ or to decrease for negative values of $G\left(R_{0}\right)$.

From equation (53), we know that the stationary points are $r=0$ and $r=1$. If $r_{0}=0$, then $R_{0}=G\left(R_{0}\right)=0$ and the system does not move from $r=0$. Where $1>r_{0}>0, G\left(R_{0}\right)$ is negative and the system moves towards $r=1$, because $\lim _{r(t) \rightarrow 1^{-}} G(R(t))=-\infty$. So $r=0$ is an unstable stationary point whereas $r=1^{-}$is a stable stationary point (1^{-}corresponds to a value that approaches 1 from left). The behavior of the system is depicted in figure 1 , based on the function $G(r)$

If the system is at a point such that $r>1$, which means $G(R)>0$ then the system goes away from the point $r=1$, because r has to increase in order for $G(R)$ to increase by time, which is the condition imposed by equation (61). So the $r=1^{+}$is an unstable stationary point.

3 Bonhoefer-van der Pol Equation

(a)

Since $\dot{x}_{1}(t)$ and $\dot{x}_{2}(t)$ are zero at the stationary points $\left(x_{1 s}, x_{2 s}\right)$, equation (6 , homework) becomes

$$
\begin{align*}
f_{1}\left(x_{1 s}, x_{2 s}\right) & =c\left(x_{2 s}+x_{1 s}-\frac{x_{1} s^{3}}{3}+z\right)=0 \tag{62}\\
f_{2}\left(x_{1 s}, x_{2 s}\right) & =-\frac{1}{c}\left(x_{1 s}+b x_{2 s}-a\right)=0 \tag{63}
\end{align*}
$$

(a)

Figure 1: $G(r)$ vs. r

From these equations we get

$$
\begin{align*}
x_{2 s} & =\frac{1}{b}\left(a-x_{1 s}\right) \tag{64}\\
0 & =\frac{1}{b}\left(a-x_{1 s}\right)+x_{1 s}-\frac{x_{1 s}^{3}}{3}+z \tag{65}
\end{align*}
$$

which has one real solution $\left(x_{1 s}, x_{2 s}\right)$ for a certain value of z. It is plotted in figure 2 for values of z between -2 and 2 .

(b)

Figure 2: Stationary points $x_{1 s}$ and $x_{2 s}$ vs. z
(b)

Elements of the matrix \mathbf{M} in the equation $\left(\delta x_{1}=x_{1}-x_{1 s}, \delta x_{2}=x_{2}-x_{2 s}\right)$,

$$
\begin{equation*}
\delta \dot{\mathbf{x}}=\mathbf{M} \delta \mathbf{x} \tag{66}
\end{equation*}
$$

can be calculated by using $M_{j k}=\left.\partial_{k} f_{j}\left(x_{1}, x_{2}\right)\right|_{\mathbf{x}_{\mathbf{s}}}$,

$$
\mathbf{M}=\left(\begin{array}{cc}
c\left(1-x_{1 s}^{2}\right) & c \tag{67}\\
-1 / c & -b / c
\end{array}\right) .
$$

If the eigenvalues and the eigenvectors of the matrix \mathbf{M} are denoted by $\lambda_{1,2}$ and $\mathbf{m}_{\mathbf{1}, \mathbf{2}}$, respectively, then the solution for the equation (66) is given by

$$
\begin{equation*}
\delta \mathbf{x}(t)=c_{1} \mathbf{m}_{\mathbf{1}} e^{\lambda_{1} t}+c_{2} \mathbf{m}_{\mathbf{2}} e^{\lambda_{2} t} \tag{68}
\end{equation*}
$$

where c_{1} and c_{2} are determined by the initial condition $\delta \mathbf{x}(0)$. One can easily tell from this equation that around a stable stationary point $\left(x_{1 s}, x_{2 s}\right), \lambda_{1,2}$ must have negative real parts.

For $z=0$, the stationary point is $\mathbf{x}_{s}=(1.20,-0.62)$. The corresponding matrix and the eigenvalues are given by

$$
\begin{align*}
\mathbf{M} & =\left(\begin{array}{cc}
-1.32 & 3 \\
-0.33 & -0.27
\end{array}\right) \tag{69}\\
\lambda_{1,2} & =-0.79 \pm 0.85 i \tag{70}
\end{align*}
$$

So the stationary point $\mathbf{x}_{s}=(1.20,-0.62)$ is stable due to the $e^{-0.79 t}$ term in the solution.
With similar arguments, for $z=-0.4$, the stationary point $\mathbf{x}_{s}=(0.91,-0.26)$ is found to be unstable, because the real part of the eigenvalues of the corresponding matrix \mathbf{M},

$$
\mathbf{M}=\left(\begin{array}{cc}
0.53 & 3 \tag{71}\\
-0.33 & -0.27
\end{array}\right)
$$

are positive, i.e.,

$$
\begin{equation*}
\lambda_{1,2}=0.13 \pm 0.92 i \tag{72}
\end{equation*}
$$

(c)

Using the discretized form of the differential equation given in the problem,

$$
\begin{equation*}
\mathbf{x}_{n+1}=\mathbf{x}_{n}+\Delta t f\left(\mathbf{x}_{n}\right) \tag{73}
\end{equation*}
$$

one can get curves like in figure 3 for $z=0$ and $z=-0.4$, with several starting points. Corresponding stationary points for these z values, i.e., $(1.20,-0.62)$ and $(0.91,-0.26)$ are marked in the plots.
(d)

When we include the noise term,

$$
\begin{equation*}
\mathbf{x}_{n+1}=\mathbf{x}_{n}+\Delta t f\left(\mathbf{x}_{n}\right)+\sigma \sqrt{\Delta t}\binom{\zeta_{1}(n)}{\zeta_{2}(n)} \tag{74}
\end{equation*}
$$

trajectories will look like in figure 4. In mathematica, one way of getting gaussian distributed random numbers, $\zeta_{j}(n)$, is using the following code:
<< Statistics'ContinuousDistributions'
ndist $=$ NormalDistribution [0, 1] \%\% where the mean and the standard deviation $\% \%$ of the distribution are specified respectively. $\zeta=$ Random[ndist]
$x_{1}(t)$ for the case $z=-0.4$ is plotted separately in figure 5.

Figure 3: $x_{1}(t), x_{2}(t)$ trajectories for different starting points (open ends of the trajectories). In case of a stable stationary point, all the trajectories come to rest at the stationary point whereas in case of an unstable stationary point the system begins a cyclic motion, regardless of its starting point.

Figure 4: $x_{1}(t), x_{2}(t)$ trajectories of the system, in case of gaussian random noise for several initial conditions $(\sigma=0.15, \Delta t=0.01)$.

4 Cable Equation

Solution for the cable equation

$$
\begin{equation*}
v(x, t)=\sqrt{\frac{2}{a}} \sum_{n=1,3, \ldots} \alpha_{n}(t) \cos \frac{n \pi x}{2 a} \tag{75}
\end{equation*}
$$

obeys the boundary conditions, i.e.,

$$
\begin{align*}
\left.\partial_{x} v(x, t)\right|_{x=0} & =\left.\sqrt{\frac{2}{a}} \sum_{n=1,3, \ldots} \frac{n \pi}{2 a} \alpha_{n}(t) \sin \frac{n \pi x}{2 a}\right|_{x=0}, \tag{76}\\
& =0 \tag{77}
\end{align*}
$$

Figure 5: $x_{1}(t)$ vs. t, for the case $z=-0.4$. $(\sigma=0.15, \Delta t=0.01)$.
and

$$
\begin{align*}
v(a, t) & =\sqrt{\frac{2}{a}} \sum_{n=1,3, \ldots} \alpha_{n}(t) \cos \frac{n \pi}{2}, \tag{78}\\
& =0 . \tag{79}
\end{align*}
$$

Inserting the general solution (75) into the cable equation provides us with the solution that governs $\alpha_{n}(t)$:

$$
\begin{align*}
0 & =\left(\partial_{t}-\partial_{x}^{2}+1\right) v(x, t) \tag{80}\\
& =\sqrt{\frac{2}{a}} \sum_{n=1,3, \ldots}\left(\dot{\alpha}_{n}(t) \cos \frac{n \pi x}{2 a}+\alpha_{n}(t)\left(\frac{n \pi}{2 a}\right)^{2} \cos \frac{n \pi x}{2 a}+\alpha_{n}(t) \cos \frac{n \pi x}{2 a}\right) \tag{81}\\
& =\sqrt{\frac{2}{a}} \sum_{n=1,3, \ldots}\left(\dot{\alpha}_{n}(t)+\left(\frac{n \pi}{2 a}\right)^{2} \alpha_{n}(t)+\alpha_{n}(t)\right) \cos \frac{n \pi x}{2 a} \tag{82}
\end{align*}
$$

In order for above summation to vanish, the term in the parenthesis must vanish. One can prove this by integrating both sides of the equation (82) with $\cos (m \pi x / 2 a)$ where $m=1,3,5, \ldots$:

$$
\begin{equation*}
0=\sqrt{\frac{2}{a}} \sum_{n=1,3, \ldots} b_{n} \int_{0}^{a} \cos \frac{n \pi x}{2 a} \cos \frac{m \pi x}{2 a} d x \tag{83}
\end{equation*}
$$

where b_{n} is the term in the parenthesis in equation (82). The integral in the equation (83) can be calculated by using the identity

$$
\begin{align*}
\cos A \cos B & =\frac{1}{2}(\cos (A+B)+\cos (A-B)) . \\
\int_{0}^{a} d x \cos \frac{n \pi x}{2 a} \cos \frac{m \pi x}{2 a} & =\frac{1}{2}\left(\int_{0}^{a} d x \cos \frac{(m+n) \pi x}{2 a}+\int_{0}^{a} d x \cos \frac{(m-n) \pi x}{2 a}\right) \tag{84}\\
& =\frac{a}{2}\left(\frac{\sin \frac{(m+n) \pi}{2}}{\frac{(m+n) \pi}{2}}+\frac{\sin \frac{(m-n) \pi}{2}}{\frac{(m-n) \pi}{2}}\right) \tag{85}
\end{align*}
$$

Let us define $m=n+k$ where k can be any even integer, since m and n are both odd. With this substitution, the equation (85) becomes

$$
\begin{align*}
\int_{0}^{a} d x \cos \frac{n \pi x}{2 a} \cos \frac{m \pi x}{2 a} & =\frac{a}{2}\left(\frac{\sin \left(n+\frac{k}{2}\right) \pi}{\left(n+\frac{k}{2}\right) \pi}+\frac{\sin \frac{k \pi}{2}}{\frac{k \pi}{2}}\right) \tag{86}\\
& =\frac{a}{2}\left(-\frac{\sin \left(\frac{k}{2}\right) \pi}{\left(n+\frac{k}{2}\right) \pi}+\frac{\sin \frac{k \pi}{2}}{\frac{k \pi}{2}}\right) \tag{87}\\
& =\frac{a}{2}\left(\frac{\sin \frac{k \pi}{2}}{\frac{k \pi}{2}}\right) \tag{88}\\
& = \begin{cases}\frac{a}{2} & k=0(i . e ., m=n) \\
0 & k \neq 0(i . e ., m \neq n)\end{cases} \tag{89}
\end{align*}
$$

In other words, one can state

$$
\begin{equation*}
\int_{0}^{a} d x \cos \frac{n \pi x}{2 a} \cos \frac{m \pi x}{2 a}=\frac{a}{2} \delta_{m n} \tag{90}
\end{equation*}
$$

From equations (eqn.need.proof.proved) and (83), one gets

$$
\begin{equation*}
0=\sqrt{\frac{a}{2}} \sum_{n=1,3, \ldots} b_{n} \delta_{m n} \tag{91}
\end{equation*}
$$

from which we obtain

$$
\begin{equation*}
b_{m}=0 \tag{92}
\end{equation*}
$$

where $m=1,3,5, \ldots$. Thus we have proved that each and every term in the parenthesis of the summation in the equation (82) must be zero, i.e.,

$$
\begin{equation*}
\dot{\alpha}_{n}(t)=-\left(1+\frac{n^{2} \pi^{2}}{4 a^{2}}\right) \alpha_{n}(t) \tag{93}
\end{equation*}
$$

Solution for this equation is given by

$$
\begin{equation*}
\alpha_{n}(t)=\alpha_{n}(0) \exp \left[-\left(1+\frac{n^{2} \pi^{2}}{4 a^{2}}\right) t\right] . \tag{94}
\end{equation*}
$$

The coefficients, $\alpha_{n}(0)$, are determined through the initial condition,

$$
\begin{equation*}
v(x, 0)=\sum_{n=1,3, \ldots} \alpha_{n}(0) \sqrt{\frac{2}{a}} \cos \frac{n \pi}{2 a} . \tag{95}
\end{equation*}
$$

By integrating both sides with $\cos (m \pi x / 2 a)$, one gets

$$
\begin{equation*}
\int_{0}^{a} v(x, 0) \cos \frac{m \pi x}{2 a} d x=\sum_{n=1,3, \ldots} \sqrt{\frac{2}{a}} \alpha_{n}(0) \int_{0}^{a} \cos \frac{m \pi x}{2 a} \cos \frac{n \pi x}{2 a} d x \tag{96}
\end{equation*}
$$

From the equations (90) and (96), we obtain

$$
\begin{equation*}
1=\sqrt{\frac{a}{2}} \sum_{n=1,3, \ldots} \alpha_{n}(0) \delta_{n m} \tag{97}
\end{equation*}
$$

We can now write the coefficient $\alpha_{m}(0)$ as

$$
\begin{equation*}
\alpha_{m}(0)=\sqrt{\frac{2}{a}} \tag{98}
\end{equation*}
$$

Consequently using equations (98), (94) and (75), one obtains the complete solution,

$$
\begin{equation*}
v(x, t)=\frac{2}{a} \sum_{n=1,3, \ldots} \cos \frac{n \pi x}{2 a} \exp \left[-\left(1+\frac{n^{2} \pi^{2}}{4 a^{2}}\right) t\right] . \tag{99}
\end{equation*}
$$

$v(x, t)$ is plotted in figure 6 .

Figure 6: $v_{1,2,3,4}(x, t)$ vs. x, t. Higher modes, in other words, narrower cosines, die off quickly by the time, so the initial Dirac delta function broadens while its magnitude decreases (see equation(99)).

