TCB Publications - Abstract

Ted Hesselroth, Kakali Sarkar, P. Patrick van der Smagt, and Klaus Schulten. Neural network control of a pneumatic robot arm. IEEE Transactions on Systems, Man, and Cybernetics, 24:28-37, 1994.

HESS94 A neural map algorithm has been employed to control a five-joint pneumatic robot arm and gripper through feedback from two video cameras. The pneumatically driven robot arm (SoftArm) employed in this investigation shares essential mechanical characteristics with skeletal muscle systems. To control the position of the arm, 200 neurons formed a network representing the three-dimensional workspace embedded in a four-dimensional system of coordinates from the two cameras, and learned a three-dimensional set of pressures corresponding to the end effector positions, as well as a set of 3 $\times$ 4 Jacobian matrices for interpolating between these positions. The gripper orientation was achieved through adaptation of a 1 $\times$ 4 Jacobian matrix for a fourth joint. Because of the properties of the rubber-tube actuators of the SoftArm, the position as a function of supplied pressure is nonlinear, nonseparable, and exhibits hysteresis. Nevertheless, through the neural network learning algorithm the position could be controlled to an accuracy of about one pixel ($\sim$ 3 mm) after 200 learning steps and the orientation could be controlled to two pixels after 800 learning steps. This was achieved through employment of a linear correction algorithm using the Jacobian matrices mentioned above. Applications of repeated corrections in each positioning and grasping step leads to a very robust control algorithm since the Jacobians learned by the network have to satisfy the weak requirement that the Jacobian yields a reduction of the distance between gripper and target. The neural network employed in the control of the SoftArm bears close analogies to a network which successfully models visual brain maps. It is concluded, therefore, from this fact and from the close analogy between the SoftArm and natural muscle systems that the successful solution of the control problem has implications for biological visuo-motor control.

Download Full Text

The manuscripts available on our site are provided for your personal use only and may not be retransmitted or redistributed without written permissions from the paper's publisher and author. You may not upload any of this site's material to any public server, on-line service, network, or bulletin board without prior written permission from the publisher and author. You may not make copies for any commercial purpose. Reproduction or storage of materials retrieved from this web site is subject to the U.S. Copyright Act of 1976, Title 17 U.S.C.

Download full text: PDF ( 1.9MB)