Jen Hsin, Johan Strümpfer, Eric H. Lee, and Klaus Schulten.
Molecular origin of the hierarchical elasticity of titin: simulation,
experiment and theory.
Annual Review of Biophysics, 40:187-203, 2011.
HSIN2011
This review uses the giant muscle protein, titin, as an example to showcase the capability of molecular dynamics simulations. Titin is responsible for the passive elasticity in muscle and is a chain composed of immunoglobulin (Ig)-like and fibronectin III (FN-III)-like domains, as well as PEVK segments rich in proline (P), glutamate (E), valine (V), and lysine (K). The elasticity of titin is derived in stages of extension under increasing external force: Ig domain straightening occurs first (termed tertiary structure elasticity), followed by the extension of the disordered PEVK segments. At larger extension and force, Ig domains unfold one by one (termed secondary structure elasticity). With the availability of crystal structures of single and connected Ig domains, the tertiary and secondary structure elasticity of titin were investigated through molecular dynamics simulations, unveiling the molecular origin of titin’s elasticity.
Download Full Text
The manuscripts available on our site are provided for your personal
use only and may not be retransmitted or redistributed without written
permissions from the paper's publisher and author. You may not upload any
of this site's material to any public server, on-line service, network, or
bulletin board without prior written permission from the publisher and
author. You may not make copies for any commercial purpose. Reproduction
or storage of materials retrieved from this web site is subject to the
U.S. Copyright Act of 1976, Title 17 U.S.C.