TCB Publications - Abstract

Venkata Giridhar Poosarla, Tong Li, Boon Chong Goh, Klaus Schulten, Thomas K. Wood, and Costas D. Maranas. Computational de novo design of antibodies binding to a peptide with high affinity. Biotechnology and Bioengineering, 114:1331-1342, 2017. (PMC: PMC5726764)

POOS2017 Antibody drugs play a critical role in infectious diseases, cancer, autoimmune diseases, and inflammation. However, experimental methods for the generation of therapeutic antibodies such as using immunized mice or directed evolution remain time consuming and cannot target a specific antigen epitope. Here, we describe the application of a computational framework called OptMAVEn combined with molecular dynamics to de novo design antibodies. Our reference system is antibody 2D10, a single-chain antibody (scFv) that recognizes the dodecapeptide DVFYPYPYASGS, a peptide mimic of mannose-containing carbohydrates. Five de novo designed scFvs sharing less than 75similarity to all existing natural antibody sequences were generated using OptMAVEn and their binding to the dodecapeptide was experimentally characterized by biolayer interferometry and isothermal titration calorimetry. Among them, three scFvs show binding affinity to the dodecapeptide at the nM level. Critically, these de novo designed scFvs exhibit considerably diverse modeled binding modes with the dodecapeptide. The results demonstrate the potential of OptMAVEn for the de novo design of thermally and conformationally stable antibodies with high binding affinity to antigens and encourage the targeting of other antigen targets in the future.


Download Full Text

The manuscripts available on our site are provided for your personal use only and may not be retransmitted or redistributed without written permissions from the paper's publisher and author. You may not upload any of this site's material to any public server, on-line service, network, or bulletin board without prior written permission from the publisher and author. You may not make copies for any commercial purpose. Reproduction or storage of materials retrieved from this web site is subject to the U.S. Copyright Act of 1976, Title 17 U.S.C.

Download full text: Request a Copy, Supplemental Material ( 1.8MB), Journal