Jeanne Rubner and Klaus Schulten.
Development of feature detectors by self-organization: A network
model.
Biological Cybernetics, 62:193-199, 1990.
RUBN90
We present a two-layered network of linear neurons that organizes itself as to extract the complete information contained in a set of presented patterns. The weights between layers obey a Hebbian rule. We propose a local anti-Hebbian rule for lateral, hierarchically organized weights within the output layer. This rule forces the activities of the output units to become uncorrelated and the lateral weights to vanish. The weights between layers converge to the eigenvectors of the covariance matrix of input patterns, i.e., the network performs a principal component analysis, yielding em all principal components. As a consequence of the proposed learning scheme, the output units become detectors of orthogonal features, similar to ones found in the brain of mammals.
Download Full Text
The manuscripts available on our site are provided for your personal
use only and may not be retransmitted or redistributed without written
permissions from the paper's publisher and author. You may not upload any
of this site's material to any public server, on-line service, network, or
bulletin board without prior written permission from the publisher and
author. You may not make copies for any commercial purpose. Reproduction
or storage of materials retrieved from this web site is subject to the
U.S. Copyright Act of 1976, Title 17 U.S.C.